Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 2.6 * weight - 138
This means that on average for every extra kilogram weight a rider loses 2.6 positions in the result.
Bosman
1
68 kgLe Gac
6
70 kgDe Rooze
13
62 kgYssaad
15
69 kgPacher
19
62 kgBrusselman
23
76 kgKerf
25
71 kgPeelaers
26
75 kgCraddock
29
69 kgCapiot
37
69 kgVermeulen
45
64 kgCam
49
61 kgvan Ginneken
52
72 kgFolsach
77
81 kgThevenot
79
69 kgBoons
85
85 kgVandenbogaerde
100
77 kgDe Buyst
102
72 kgMaes
111
72 kg
1
68 kgLe Gac
6
70 kgDe Rooze
13
62 kgYssaad
15
69 kgPacher
19
62 kgBrusselman
23
76 kgKerf
25
71 kgPeelaers
26
75 kgCraddock
29
69 kgCapiot
37
69 kgVermeulen
45
64 kgCam
49
61 kgvan Ginneken
52
72 kgFolsach
77
81 kgThevenot
79
69 kgBoons
85
85 kgVandenbogaerde
100
77 kgDe Buyst
102
72 kgMaes
111
72 kg
Weight (KG) →
Result →
85
61
1
111
# | Rider | Weight (KG) |
---|---|---|
1 | BOSMAN Gert-Jan | 68 |
6 | LE GAC Olivier | 70 |
13 | DE ROOZE Niels | 62 |
15 | YSSAAD Yannis | 69 |
19 | PACHER Quentin | 62 |
23 | BRUSSELMAN Twan | 76 |
25 | KERF Jerome | 71 |
26 | PEELAERS Jeff | 75 |
29 | CRADDOCK Lawson | 69 |
37 | CAPIOT Amaury | 69 |
45 | VERMEULEN Emiel | 64 |
49 | CAM Maxime | 61 |
52 | VAN GINNEKEN Sjoerd | 72 |
77 | FOLSACH Casper | 81 |
79 | THEVENOT Guillaume | 69 |
85 | BOONS Ruben | 85 |
100 | VANDENBOGAERDE Jens | 77 |
102 | DE BUYST Jasper | 72 |
111 | MAES Alexander | 72 |