Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.7 * weight + 79
This means that on average for every extra kilogram weight a rider loses -0.7 positions in the result.
Craddock
1
69 kgVandenbogaerde
3
77 kgLe Gac
4
70 kgBosman
8
68 kgDe Rooze
11
62 kgDe Buyst
14
72 kgBoons
16
85 kgPeelaers
18
75 kgvan Ginneken
19
72 kgCam
22
61 kgYssaad
24
69 kgCapiot
27
69 kgBrusselman
31
76 kgFolsach
33
81 kgKerf
35
71 kgPacher
48
62 kgThevenot
64
69 kgVermeulen
80
64 kgMaes
95
72 kg
1
69 kgVandenbogaerde
3
77 kgLe Gac
4
70 kgBosman
8
68 kgDe Rooze
11
62 kgDe Buyst
14
72 kgBoons
16
85 kgPeelaers
18
75 kgvan Ginneken
19
72 kgCam
22
61 kgYssaad
24
69 kgCapiot
27
69 kgBrusselman
31
76 kgFolsach
33
81 kgKerf
35
71 kgPacher
48
62 kgThevenot
64
69 kgVermeulen
80
64 kgMaes
95
72 kg
Weight (KG) →
Result →
85
61
1
95
# | Rider | Weight (KG) |
---|---|---|
1 | CRADDOCK Lawson | 69 |
3 | VANDENBOGAERDE Jens | 77 |
4 | LE GAC Olivier | 70 |
8 | BOSMAN Gert-Jan | 68 |
11 | DE ROOZE Niels | 62 |
14 | DE BUYST Jasper | 72 |
16 | BOONS Ruben | 85 |
18 | PEELAERS Jeff | 75 |
19 | VAN GINNEKEN Sjoerd | 72 |
22 | CAM Maxime | 61 |
24 | YSSAAD Yannis | 69 |
27 | CAPIOT Amaury | 69 |
31 | BRUSSELMAN Twan | 76 |
33 | FOLSACH Casper | 81 |
35 | KERF Jerome | 71 |
48 | PACHER Quentin | 62 |
64 | THEVENOT Guillaume | 69 |
80 | VERMEULEN Emiel | 64 |
95 | MAES Alexander | 72 |