Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 2.1 * weight - 111
This means that on average for every extra kilogram weight a rider loses 2.1 positions in the result.
Craddock
2
69 kgPacher
3
62 kgYssaad
5
69 kgLe Gac
6
70 kgCapiot
9
69 kgMaes
14
72 kgThevenot
19
69 kgVermeulen
21
64 kgDe Rooze
23
62 kgvan Ginneken
26
72 kgBosman
40
68 kgPeelaers
41
75 kgVandenbogaerde
46
77 kgKerf
65
71 kgBoons
70
85 kgBrusselman
72
76 kgFolsach
77
81 kgCam
80
61 kgDe Buyst
87
72 kg
2
69 kgPacher
3
62 kgYssaad
5
69 kgLe Gac
6
70 kgCapiot
9
69 kgMaes
14
72 kgThevenot
19
69 kgVermeulen
21
64 kgDe Rooze
23
62 kgvan Ginneken
26
72 kgBosman
40
68 kgPeelaers
41
75 kgVandenbogaerde
46
77 kgKerf
65
71 kgBoons
70
85 kgBrusselman
72
76 kgFolsach
77
81 kgCam
80
61 kgDe Buyst
87
72 kg
Weight (KG) →
Result →
85
61
2
87
# | Rider | Weight (KG) |
---|---|---|
2 | CRADDOCK Lawson | 69 |
3 | PACHER Quentin | 62 |
5 | YSSAAD Yannis | 69 |
6 | LE GAC Olivier | 70 |
9 | CAPIOT Amaury | 69 |
14 | MAES Alexander | 72 |
19 | THEVENOT Guillaume | 69 |
21 | VERMEULEN Emiel | 64 |
23 | DE ROOZE Niels | 62 |
26 | VAN GINNEKEN Sjoerd | 72 |
40 | BOSMAN Gert-Jan | 68 |
41 | PEELAERS Jeff | 75 |
46 | VANDENBOGAERDE Jens | 77 |
65 | KERF Jerome | 71 |
70 | BOONS Ruben | 85 |
72 | BRUSSELMAN Twan | 76 |
77 | FOLSACH Casper | 81 |
80 | CAM Maxime | 61 |
87 | DE BUYST Jasper | 72 |