Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -1 * weight + 104
This means that on average for every extra kilogram weight a rider loses -1 positions in the result.
Le Gac
2
70 kgSénéchal
3
77 kgThevenot
5
69 kgEyskens
6
68 kgMottier
10
65 kgGodrie
13
74 kgBenoot
20
72 kgLecuisinier
22
65 kgVergaerde
25
74 kgKowalski
28
67 kgLedanois
30
67 kgPouilly
31
66 kgConstantin
37
66 kgMaes
39
72 kgFerasse
46
61 kgVermeulen
60
64 kgTurgis
64
70 kgGonzález
70
62.5 kgBaeyens
76
54 kgFournier
80
71 kgLamarre
86
74 kgUcha
89
75 kg
2
70 kgSénéchal
3
77 kgThevenot
5
69 kgEyskens
6
68 kgMottier
10
65 kgGodrie
13
74 kgBenoot
20
72 kgLecuisinier
22
65 kgVergaerde
25
74 kgKowalski
28
67 kgLedanois
30
67 kgPouilly
31
66 kgConstantin
37
66 kgMaes
39
72 kgFerasse
46
61 kgVermeulen
60
64 kgTurgis
64
70 kgGonzález
70
62.5 kgBaeyens
76
54 kgFournier
80
71 kgLamarre
86
74 kgUcha
89
75 kg
Weight (KG) →
Result →
77
54
2
89
# | Rider | Weight (KG) |
---|---|---|
2 | LE GAC Olivier | 70 |
3 | SÉNÉCHAL Florian | 77 |
5 | THEVENOT Guillaume | 69 |
6 | EYSKENS Jeroen | 68 |
10 | MOTTIER Justin | 65 |
13 | GODRIE Stan | 74 |
20 | BENOOT Tiesj | 72 |
22 | LECUISINIER Pierre-Henri | 65 |
25 | VERGAERDE Otto | 74 |
28 | KOWALSKI Dylan | 67 |
30 | LEDANOIS Kévin | 67 |
31 | POUILLY Félix | 66 |
37 | CONSTANTIN Baptiste | 66 |
39 | MAES Alexander | 72 |
46 | FERASSE Thibault | 61 |
60 | VERMEULEN Emiel | 64 |
64 | TURGIS Anthony | 70 |
70 | GONZÁLEZ Óscar | 62.5 |
76 | BAEYENS James | 54 |
80 | FOURNIER Marc | 71 |
86 | LAMARRE Sony | 74 |
89 | UCHA Jacobo | 75 |