Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.1 * weight + 54
This means that on average for every extra kilogram weight a rider loses -0.1 positions in the result.
Sénéchal
2
77 kgLe Gac
3
70 kgThevenot
4
69 kgEyskens
6
68 kgJulius
12
59 kgMottier
14
65 kgGodrie
22
74 kgPouilly
24
66 kgMaes
26
72 kgVergaerde
31
74 kgBenoot
35
72 kgLedanois
46
67 kgFerasse
52
61 kgKowalski
58
67 kgConstantin
65
66 kgLecuisinier
67
65 kgBaeyens
68
54 kgVermeulen
78
64 kgTurgis
89
70 kgGonzález
99
62.5 kgUcha
111
75 kgFournier
125
71 kgLamarre
129
74 kg
2
77 kgLe Gac
3
70 kgThevenot
4
69 kgEyskens
6
68 kgJulius
12
59 kgMottier
14
65 kgGodrie
22
74 kgPouilly
24
66 kgMaes
26
72 kgVergaerde
31
74 kgBenoot
35
72 kgLedanois
46
67 kgFerasse
52
61 kgKowalski
58
67 kgConstantin
65
66 kgLecuisinier
67
65 kgBaeyens
68
54 kgVermeulen
78
64 kgTurgis
89
70 kgGonzález
99
62.5 kgUcha
111
75 kgFournier
125
71 kgLamarre
129
74 kg
Weight (KG) →
Result →
77
54
2
129
# | Rider | Weight (KG) |
---|---|---|
2 | SÉNÉCHAL Florian | 77 |
3 | LE GAC Olivier | 70 |
4 | THEVENOT Guillaume | 69 |
6 | EYSKENS Jeroen | 68 |
12 | JULIUS Jayde | 59 |
14 | MOTTIER Justin | 65 |
22 | GODRIE Stan | 74 |
24 | POUILLY Félix | 66 |
26 | MAES Alexander | 72 |
31 | VERGAERDE Otto | 74 |
35 | BENOOT Tiesj | 72 |
46 | LEDANOIS Kévin | 67 |
52 | FERASSE Thibault | 61 |
58 | KOWALSKI Dylan | 67 |
65 | CONSTANTIN Baptiste | 66 |
67 | LECUISINIER Pierre-Henri | 65 |
68 | BAEYENS James | 54 |
78 | VERMEULEN Emiel | 64 |
89 | TURGIS Anthony | 70 |
99 | GONZÁLEZ Óscar | 62.5 |
111 | UCHA Jacobo | 75 |
125 | FOURNIER Marc | 71 |
129 | LAMARRE Sony | 74 |