Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -2 * weight + 171
This means that on average for every extra kilogram weight a rider loses -2 positions in the result.
Le Gac
1
70 kgSénéchal
2
77 kgGodrie
3
74 kgLecuisinier
7
65 kgEyskens
10
68 kgVergaerde
12
74 kgThevenot
13
69 kgFournier
16
71 kgMottier
17
65 kgKowalski
20
67 kgLedanois
22
67 kgTurgis
26
70 kgBenoot
34
72 kgPouilly
35
66 kgVermeulen
37
64 kgUcha
39
75 kgConstantin
50
66 kgBaeyens
57
54 kgMaes
63
72 kgGonzález
65
62.5 kgFerasse
79
61 kgJulius
89
59 kgLamarre
104
74 kg
1
70 kgSénéchal
2
77 kgGodrie
3
74 kgLecuisinier
7
65 kgEyskens
10
68 kgVergaerde
12
74 kgThevenot
13
69 kgFournier
16
71 kgMottier
17
65 kgKowalski
20
67 kgLedanois
22
67 kgTurgis
26
70 kgBenoot
34
72 kgPouilly
35
66 kgVermeulen
37
64 kgUcha
39
75 kgConstantin
50
66 kgBaeyens
57
54 kgMaes
63
72 kgGonzález
65
62.5 kgFerasse
79
61 kgJulius
89
59 kgLamarre
104
74 kg
Weight (KG) →
Result →
77
54
1
104
# | Rider | Weight (KG) |
---|---|---|
1 | LE GAC Olivier | 70 |
2 | SÉNÉCHAL Florian | 77 |
3 | GODRIE Stan | 74 |
7 | LECUISINIER Pierre-Henri | 65 |
10 | EYSKENS Jeroen | 68 |
12 | VERGAERDE Otto | 74 |
13 | THEVENOT Guillaume | 69 |
16 | FOURNIER Marc | 71 |
17 | MOTTIER Justin | 65 |
20 | KOWALSKI Dylan | 67 |
22 | LEDANOIS Kévin | 67 |
26 | TURGIS Anthony | 70 |
34 | BENOOT Tiesj | 72 |
35 | POUILLY Félix | 66 |
37 | VERMEULEN Emiel | 64 |
39 | UCHA Jacobo | 75 |
50 | CONSTANTIN Baptiste | 66 |
57 | BAEYENS James | 54 |
63 | MAES Alexander | 72 |
65 | GONZÁLEZ Óscar | 62.5 |
79 | FERASSE Thibault | 61 |
89 | JULIUS Jayde | 59 |
104 | LAMARRE Sony | 74 |