Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -1.7 * weight + 157
This means that on average for every extra kilogram weight a rider loses -1.7 positions in the result.
Benoot
3
72 kgMottier
8
65 kgFournier
10
71 kgSénéchal
14
77 kgLe Gac
18
70 kgLamarre
19
74 kgMaes
24
72 kgVermeulen
29
64 kgFerasse
31
61 kgEyskens
35
68 kgGodrie
39
74 kgTurgis
48
70 kgKowalski
52
67 kgVergaerde
54
74 kgLedanois
55
67 kgLecuisinier
56
65 kgThevenot
57
69 kgConstantin
62
66 kgPouilly
67
66 kgGonzález
73
62.5 kgBaeyens
83
54 kgUcha
90
75 kg
3
72 kgMottier
8
65 kgFournier
10
71 kgSénéchal
14
77 kgLe Gac
18
70 kgLamarre
19
74 kgMaes
24
72 kgVermeulen
29
64 kgFerasse
31
61 kgEyskens
35
68 kgGodrie
39
74 kgTurgis
48
70 kgKowalski
52
67 kgVergaerde
54
74 kgLedanois
55
67 kgLecuisinier
56
65 kgThevenot
57
69 kgConstantin
62
66 kgPouilly
67
66 kgGonzález
73
62.5 kgBaeyens
83
54 kgUcha
90
75 kg
Weight (KG) →
Result →
77
54
3
90
# | Rider | Weight (KG) |
---|---|---|
3 | BENOOT Tiesj | 72 |
8 | MOTTIER Justin | 65 |
10 | FOURNIER Marc | 71 |
14 | SÉNÉCHAL Florian | 77 |
18 | LE GAC Olivier | 70 |
19 | LAMARRE Sony | 74 |
24 | MAES Alexander | 72 |
29 | VERMEULEN Emiel | 64 |
31 | FERASSE Thibault | 61 |
35 | EYSKENS Jeroen | 68 |
39 | GODRIE Stan | 74 |
48 | TURGIS Anthony | 70 |
52 | KOWALSKI Dylan | 67 |
54 | VERGAERDE Otto | 74 |
55 | LEDANOIS Kévin | 67 |
56 | LECUISINIER Pierre-Henri | 65 |
57 | THEVENOT Guillaume | 69 |
62 | CONSTANTIN Baptiste | 66 |
67 | POUILLY Félix | 66 |
73 | GONZÁLEZ Óscar | 62.5 |
83 | BAEYENS James | 54 |
90 | UCHA Jacobo | 75 |