Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -1.3 * weight + 116
This means that on average for every extra kilogram weight a rider loses -1.3 positions in the result.
Mccormick
1
72.5 kgHavik
2
73 kgBenoot
3
72 kgGesbert
6
63 kgVergaerde
7
74 kgVerschuere
8
75 kgPouilly
13
66 kgKowalski
16
67 kgFerasse
20
61 kgvan Dongen
22
75 kgLivyns
25
58 kgOurselin
26
70 kgHofstede
27
73 kgMertz
31
70 kgSellier
42
68 kgJourniaux
43
63 kgWhite
44
70 kgBonnamour
48
70 kgVan Dalen
50
70 kgFournier
77
71 kgGoubert
83
61 kg
1
72.5 kgHavik
2
73 kgBenoot
3
72 kgGesbert
6
63 kgVergaerde
7
74 kgVerschuere
8
75 kgPouilly
13
66 kgKowalski
16
67 kgFerasse
20
61 kgvan Dongen
22
75 kgLivyns
25
58 kgOurselin
26
70 kgHofstede
27
73 kgMertz
31
70 kgSellier
42
68 kgJourniaux
43
63 kgWhite
44
70 kgBonnamour
48
70 kgVan Dalen
50
70 kgFournier
77
71 kgGoubert
83
61 kg
Weight (KG) →
Result →
75
58
1
83
# | Rider | Weight (KG) |
---|---|---|
1 | MCCORMICK Hayden | 72.5 |
2 | HAVIK Piotr | 73 |
3 | BENOOT Tiesj | 72 |
6 | GESBERT Élie | 63 |
7 | VERGAERDE Otto | 74 |
8 | VERSCHUERE Seppe | 75 |
13 | POUILLY Félix | 66 |
16 | KOWALSKI Dylan | 67 |
20 | FERASSE Thibault | 61 |
22 | VAN DONGEN Ricardo | 75 |
25 | LIVYNS Arjen | 58 |
26 | OURSELIN Paul | 70 |
27 | HOFSTEDE Lennard | 73 |
31 | MERTZ Rémy | 70 |
42 | SELLIER Simon | 68 |
43 | JOURNIAUX Axel | 63 |
44 | WHITE Curtis | 70 |
48 | BONNAMOUR Franck | 70 |
50 | VAN DALEN Jason | 70 |
77 | FOURNIER Marc | 71 |
83 | GOUBERT Jean | 61 |