Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -1.8 * weight + 160
This means that on average for every extra kilogram weight a rider loses -1.8 positions in the result.
Mccormick
1
72.5 kgPouilly
2
66 kgBenoot
3
72 kgVergaerde
4
74 kgGesbert
6
63 kgVerschuere
10
75 kgHavik
13
73 kgFerasse
14
61 kgLivyns
17
58 kgKowalski
24
67 kgMertz
34
70 kgOurselin
37
70 kgHofstede
38
73 kgvan Dongen
44
75 kgWhite
51
70 kgJourniaux
56
63 kgBonnamour
60
70 kgSellier
61
68 kgVan Dalen
64
70 kgFournier
74
71 kgBaeyens
93
54 kgGoubert
104
61 kg
1
72.5 kgPouilly
2
66 kgBenoot
3
72 kgVergaerde
4
74 kgGesbert
6
63 kgVerschuere
10
75 kgHavik
13
73 kgFerasse
14
61 kgLivyns
17
58 kgKowalski
24
67 kgMertz
34
70 kgOurselin
37
70 kgHofstede
38
73 kgvan Dongen
44
75 kgWhite
51
70 kgJourniaux
56
63 kgBonnamour
60
70 kgSellier
61
68 kgVan Dalen
64
70 kgFournier
74
71 kgBaeyens
93
54 kgGoubert
104
61 kg
Weight (KG) →
Result →
75
54
1
104
# | Rider | Weight (KG) |
---|---|---|
1 | MCCORMICK Hayden | 72.5 |
2 | POUILLY Félix | 66 |
3 | BENOOT Tiesj | 72 |
4 | VERGAERDE Otto | 74 |
6 | GESBERT Élie | 63 |
10 | VERSCHUERE Seppe | 75 |
13 | HAVIK Piotr | 73 |
14 | FERASSE Thibault | 61 |
17 | LIVYNS Arjen | 58 |
24 | KOWALSKI Dylan | 67 |
34 | MERTZ Rémy | 70 |
37 | OURSELIN Paul | 70 |
38 | HOFSTEDE Lennard | 73 |
44 | VAN DONGEN Ricardo | 75 |
51 | WHITE Curtis | 70 |
56 | JOURNIAUX Axel | 63 |
60 | BONNAMOUR Franck | 70 |
61 | SELLIER Simon | 68 |
64 | VAN DALEN Jason | 70 |
74 | FOURNIER Marc | 71 |
93 | BAEYENS James | 54 |
104 | GOUBERT Jean | 61 |