Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -3.6 * weight + 283
This means that on average for every extra kilogram weight a rider loses -3.6 positions in the result.
Mccormick
2
72.5 kgKowalski
3
67 kgHavik
4
73 kgBenoot
6
72 kgGesbert
9
63 kgVergaerde
10
74 kgFournier
11
71 kgVerschuere
12
75 kgvan Dongen
14
75 kgBonnamour
17
70 kgPouilly
28
66 kgOurselin
34
70 kgVan Dalen
36
70 kgSellier
39
68 kgHofstede
47
73 kgJourniaux
52
63 kgFerasse
58
61 kgMertz
65
70 kgLivyns
76
58 kgWhite
90
70 kgBaeyens
93
54 kgGoubert
103
61 kg
2
72.5 kgKowalski
3
67 kgHavik
4
73 kgBenoot
6
72 kgGesbert
9
63 kgVergaerde
10
74 kgFournier
11
71 kgVerschuere
12
75 kgvan Dongen
14
75 kgBonnamour
17
70 kgPouilly
28
66 kgOurselin
34
70 kgVan Dalen
36
70 kgSellier
39
68 kgHofstede
47
73 kgJourniaux
52
63 kgFerasse
58
61 kgMertz
65
70 kgLivyns
76
58 kgWhite
90
70 kgBaeyens
93
54 kgGoubert
103
61 kg
Weight (KG) →
Result →
75
54
2
103
# | Rider | Weight (KG) |
---|---|---|
2 | MCCORMICK Hayden | 72.5 |
3 | KOWALSKI Dylan | 67 |
4 | HAVIK Piotr | 73 |
6 | BENOOT Tiesj | 72 |
9 | GESBERT Élie | 63 |
10 | VERGAERDE Otto | 74 |
11 | FOURNIER Marc | 71 |
12 | VERSCHUERE Seppe | 75 |
14 | VAN DONGEN Ricardo | 75 |
17 | BONNAMOUR Franck | 70 |
28 | POUILLY Félix | 66 |
34 | OURSELIN Paul | 70 |
36 | VAN DALEN Jason | 70 |
39 | SELLIER Simon | 68 |
47 | HOFSTEDE Lennard | 73 |
52 | JOURNIAUX Axel | 63 |
58 | FERASSE Thibault | 61 |
65 | MERTZ Rémy | 70 |
76 | LIVYNS Arjen | 58 |
90 | WHITE Curtis | 70 |
93 | BAEYENS James | 54 |
103 | GOUBERT Jean | 61 |