Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -1.2 * weight + 114
This means that on average for every extra kilogram weight a rider loses -1.2 positions in the result.
Vergaerde
3
74 kgBenoot
5
72 kgPouilly
6
66 kgGesbert
10
63 kgVerschuere
11
75 kgKowalski
12
67 kgOurselin
18
70 kgvan Dongen
20
75 kgMccormick
23
72.5 kgHavik
24
73 kgVan Dalen
26
70 kgJourniaux
29
63 kgSellier
32
68 kgFerasse
41
61 kgMertz
43
70 kgHofstede
46
73 kgGoubert
56
61 kgWhite
57
70 kgLivyns
61
58 kgBonnamour
75
70 kgFournier
83
71 kg
3
74 kgBenoot
5
72 kgPouilly
6
66 kgGesbert
10
63 kgVerschuere
11
75 kgKowalski
12
67 kgOurselin
18
70 kgvan Dongen
20
75 kgMccormick
23
72.5 kgHavik
24
73 kgVan Dalen
26
70 kgJourniaux
29
63 kgSellier
32
68 kgFerasse
41
61 kgMertz
43
70 kgHofstede
46
73 kgGoubert
56
61 kgWhite
57
70 kgLivyns
61
58 kgBonnamour
75
70 kgFournier
83
71 kg
Weight (KG) →
Result →
75
58
3
83
# | Rider | Weight (KG) |
---|---|---|
3 | VERGAERDE Otto | 74 |
5 | BENOOT Tiesj | 72 |
6 | POUILLY Félix | 66 |
10 | GESBERT Élie | 63 |
11 | VERSCHUERE Seppe | 75 |
12 | KOWALSKI Dylan | 67 |
18 | OURSELIN Paul | 70 |
20 | VAN DONGEN Ricardo | 75 |
23 | MCCORMICK Hayden | 72.5 |
24 | HAVIK Piotr | 73 |
26 | VAN DALEN Jason | 70 |
29 | JOURNIAUX Axel | 63 |
32 | SELLIER Simon | 68 |
41 | FERASSE Thibault | 61 |
43 | MERTZ Rémy | 70 |
46 | HOFSTEDE Lennard | 73 |
56 | GOUBERT Jean | 61 |
57 | WHITE Curtis | 70 |
61 | LIVYNS Arjen | 58 |
75 | BONNAMOUR Franck | 70 |
83 | FOURNIER Marc | 71 |