Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.1 * weight + 7
This means that on average for every extra kilogram weight a rider loses 0.1 positions in the result.
Blikra
1
75 kgRocchetti
2
72 kgPlanckaert
3
69 kgTouzé
4
69 kgBax
6
78 kgDunbar
7
57 kgCornelisse
10
73.5 kgCherkasov
12
68 kgLarsen
14
74 kgIdjouadiene
15
69 kgRikunov
16
71 kgGhys
17
72 kgMandrysch
18
73 kgBarceló
19
65 kgEenkhoorn
21
72 kgGeniets
22
73 kgSleen
26
65 kgGidich
27
69 kgAffini
28
80 kg
1
75 kgRocchetti
2
72 kgPlanckaert
3
69 kgTouzé
4
69 kgBax
6
78 kgDunbar
7
57 kgCornelisse
10
73.5 kgCherkasov
12
68 kgLarsen
14
74 kgIdjouadiene
15
69 kgRikunov
16
71 kgGhys
17
72 kgMandrysch
18
73 kgBarceló
19
65 kgEenkhoorn
21
72 kgGeniets
22
73 kgSleen
26
65 kgGidich
27
69 kgAffini
28
80 kg
Weight (KG) →
Result →
80
57
1
28
# | Rider | Weight (KG) |
---|---|---|
1 | BLIKRA Erlend | 75 |
2 | ROCCHETTI Filippo | 72 |
3 | PLANCKAERT Emiel | 69 |
4 | TOUZÉ Damien | 69 |
6 | BAX Sjoerd | 78 |
7 | DUNBAR Eddie | 57 |
10 | CORNELISSE Mitchell | 73.5 |
12 | CHERKASOV Nikolay | 68 |
14 | LARSEN Niklas | 74 |
15 | IDJOUADIENE Pierre | 69 |
16 | RIKUNOV Petr | 71 |
17 | GHYS Robbe | 72 |
18 | MANDRYSCH John | 73 |
19 | BARCELÓ Fernando | 65 |
21 | EENKHOORN Pascal | 72 |
22 | GENIETS Kevin | 73 |
26 | SLEEN Torjus | 65 |
27 | GIDICH Yevgeniy | 69 |
28 | AFFINI Edoardo | 80 |