Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.3 * weight + 33
This means that on average for every extra kilogram weight a rider loses -0.3 positions in the result.
Egholm
1
69 kgLecamus-Lambert
2
79 kgDavy
3
73 kgPedersen
5
84 kgMärkl
6
70 kgReynders
7
76 kgJohansen
10
77 kgHeiderscheid
14
73 kgPronskiy
16
58 kgRutsch
17
82 kgVillalobos
18
66 kgvan der Horst
19
62 kgLeknessund
22
72 kgVanhoof
23
75 kgJakala
25
69 kgWeemaes
26
73 kgBjerg
27
78 kg
1
69 kgLecamus-Lambert
2
79 kgDavy
3
73 kgPedersen
5
84 kgMärkl
6
70 kgReynders
7
76 kgJohansen
10
77 kgHeiderscheid
14
73 kgPronskiy
16
58 kgRutsch
17
82 kgVillalobos
18
66 kgvan der Horst
19
62 kgLeknessund
22
72 kgVanhoof
23
75 kgJakala
25
69 kgWeemaes
26
73 kgBjerg
27
78 kg
Weight (KG) →
Result →
84
58
1
27
# | Rider | Weight (KG) |
---|---|---|
1 | EGHOLM Jakob | 69 |
2 | LECAMUS-LAMBERT Florentin | 79 |
3 | DAVY Clément | 73 |
5 | PEDERSEN Rasmus Lund | 84 |
6 | MÄRKL Niklas | 70 |
7 | REYNDERS Jens | 76 |
10 | JOHANSEN Julius | 77 |
14 | HEIDERSCHEID Colin | 73 |
16 | PRONSKIY Vadim | 58 |
17 | RUTSCH Jonas | 82 |
18 | VILLALOBOS Luis | 66 |
19 | VAN DER HORST Dennis | 62 |
22 | LEKNESSUND Andreas | 72 |
23 | VANHOOF Ward | 75 |
25 | JAKALA Jakub | 69 |
26 | WEEMAES Sasha | 73 |
27 | BJERG Mikkel | 78 |