Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0 * weight + 14
This means that on average for every extra kilogram weight a rider loses -0 positions in the result.
Evenepoel
1
61 kgWærenskjold
2
92 kgRodríguez
3
67 kgPiccolo
4
64 kgGonov
5
76 kgHeiduk
6
70 kgSander Hansen
8
68 kgAcco
9
69 kgFedorov
10
80 kgOmrzel
11
67 kgBraet
14
68 kgBrussenskiy
15
64 kgParisini
16
65 kgHessmann
17
78 kgSyritsa
19
85 kgGeßner
20
72 kgBaroncini
27
74 kgVan den Bossche
28
63 kg
1
61 kgWærenskjold
2
92 kgRodríguez
3
67 kgPiccolo
4
64 kgGonov
5
76 kgHeiduk
6
70 kgSander Hansen
8
68 kgAcco
9
69 kgFedorov
10
80 kgOmrzel
11
67 kgBraet
14
68 kgBrussenskiy
15
64 kgParisini
16
65 kgHessmann
17
78 kgSyritsa
19
85 kgGeßner
20
72 kgBaroncini
27
74 kgVan den Bossche
28
63 kg
Weight (KG) →
Result →
92
61
1
28
# | Rider | Weight (KG) |
---|---|---|
1 | EVENEPOEL Remco | 61 |
2 | WÆRENSKJOLD Søren | 92 |
3 | RODRÍGUEZ Carlos | 67 |
4 | PICCOLO Andrea | 64 |
5 | GONOV Lev | 76 |
6 | HEIDUK Kim | 70 |
8 | SANDER HANSEN Marcus | 68 |
9 | ACCO Alessio | 69 |
10 | FEDOROV Yevgeniy | 80 |
11 | OMRZEL Aljaž | 67 |
14 | BRAET Vito | 68 |
15 | BRUSSENSKIY Gleb | 64 |
16 | PARISINI Nicolò | 65 |
17 | HESSMANN Michel | 78 |
19 | SYRITSA Gleb | 85 |
20 | GEßNER Jakob | 72 |
27 | BARONCINI Filippo | 74 |
28 | VAN DEN BOSSCHE Fabio | 63 |