Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -1 * weight + 97
This means that on average for every extra kilogram weight a rider loses -1 positions in the result.
Saronni
2
65 kgKuiper
6
69 kgvan der Poel
7
70 kgDe Wolf
8
75 kgBittinger
9
69 kgSergeant
13
76 kgBernaudeau
19
64 kgRoche
24
74 kgPollentier
31
62 kgHinault
32
62 kgMartin
34
62 kgZoetemelk
35
68 kgBourreau
45
63 kgNevens
49
58 kgde Rooij
52
69 kgvan Katwijk
60
75 kgDidier
77
67 kgLeMond
78
67 kg
2
65 kgKuiper
6
69 kgvan der Poel
7
70 kgDe Wolf
8
75 kgBittinger
9
69 kgSergeant
13
76 kgBernaudeau
19
64 kgRoche
24
74 kgPollentier
31
62 kgHinault
32
62 kgMartin
34
62 kgZoetemelk
35
68 kgBourreau
45
63 kgNevens
49
58 kgde Rooij
52
69 kgvan Katwijk
60
75 kgDidier
77
67 kgLeMond
78
67 kg
Weight (KG) →
Result →
76
58
2
78
# | Rider | Weight (KG) |
---|---|---|
2 | SARONNI Giuseppe | 65 |
6 | KUIPER Hennie | 69 |
7 | VAN DER POEL Adrie | 70 |
8 | DE WOLF Fons | 75 |
9 | BITTINGER René | 69 |
13 | SERGEANT Marc | 76 |
19 | BERNAUDEAU Jean-René | 64 |
24 | ROCHE Stephen | 74 |
31 | POLLENTIER Michel | 62 |
32 | HINAULT Bernard | 62 |
34 | MARTIN Raymond | 62 |
35 | ZOETEMELK Joop | 68 |
45 | BOURREAU Bernard | 63 |
49 | NEVENS Jan | 58 |
52 | DE ROOIJ Theo | 69 |
60 | VAN KATWIJK Fons | 75 |
77 | DIDIER Lucien | 67 |
78 | LEMOND Greg | 67 |