Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.3 * weight + 48
This means that on average for every extra kilogram weight a rider loses -0.3 positions in the result.
van der Poel
1
70 kgDernies
2
75 kgKelly
5
77 kgSørensen
8
70 kgEarley
10
62 kgArgentin
12
66 kgHolm Sørensen
14
77 kgDe Wolf
15
75 kgBugno
19
68 kgDemierre
23
70 kgVanderaerden
27
74 kgDelgado
33
64 kgMadiot
36
68 kgBreukink
37
70 kgGianetti
44
62 kgJärmann
53
73 kgHoste
60
76 kgSkibby
66
70 kg
1
70 kgDernies
2
75 kgKelly
5
77 kgSørensen
8
70 kgEarley
10
62 kgArgentin
12
66 kgHolm Sørensen
14
77 kgDe Wolf
15
75 kgBugno
19
68 kgDemierre
23
70 kgVanderaerden
27
74 kgDelgado
33
64 kgMadiot
36
68 kgBreukink
37
70 kgGianetti
44
62 kgJärmann
53
73 kgHoste
60
76 kgSkibby
66
70 kg
Weight (KG) →
Result →
77
62
1
66
# | Rider | Weight (KG) |
---|---|---|
1 | VAN DER POEL Adrie | 70 |
2 | DERNIES Michel | 75 |
5 | KELLY Sean | 77 |
8 | SØRENSEN Rolf | 70 |
10 | EARLEY Martin | 62 |
12 | ARGENTIN Moreno | 66 |
14 | HOLM SØRENSEN Brian | 77 |
15 | DE WOLF Fons | 75 |
19 | BUGNO Gianni | 68 |
23 | DEMIERRE Serge | 70 |
27 | VANDERAERDEN Eric | 74 |
33 | DELGADO Pedro | 64 |
36 | MADIOT Marc | 68 |
37 | BREUKINK Erik | 70 |
44 | GIANETTI Mauro | 62 |
53 | JÄRMANN Rolf | 73 |
60 | HOSTE Frank | 76 |
66 | SKIBBY Jesper | 70 |