Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.6 * weight + 67
This means that on average for every extra kilogram weight a rider loses -0.6 positions in the result.
Dekker
1
69 kgChristensen
5
69 kgKozontchuk
7
75 kgRoelandts
8
78 kgDe Backer
9
73 kgIngels
10
70 kgSuray
11
67 kgWeylandt
12
72 kgBoom
13
75 kgVitoria
16
74 kgLund
19
65 kgVanendert
22
62 kgNeirynck
24
78 kgDeroo
28
61 kgIsta
29
70 kgSørensen
30
64 kgWyss
36
65 kgNeyens
39
74 kgKohler
42
69 kgKonovalovas
54
74 kgBreschel
57
70 kgPardini
64
68 kg
1
69 kgChristensen
5
69 kgKozontchuk
7
75 kgRoelandts
8
78 kgDe Backer
9
73 kgIngels
10
70 kgSuray
11
67 kgWeylandt
12
72 kgBoom
13
75 kgVitoria
16
74 kgLund
19
65 kgVanendert
22
62 kgNeirynck
24
78 kgDeroo
28
61 kgIsta
29
70 kgSørensen
30
64 kgWyss
36
65 kgNeyens
39
74 kgKohler
42
69 kgKonovalovas
54
74 kgBreschel
57
70 kgPardini
64
68 kg
Weight (KG) →
Result →
78
61
1
64
# | Rider | Weight (KG) |
---|---|---|
1 | DEKKER Thomas | 69 |
5 | CHRISTENSEN Mads | 69 |
7 | KOZONTCHUK Dmitry | 75 |
8 | ROELANDTS Jürgen | 78 |
9 | DE BACKER Bert | 73 |
10 | INGELS Nick | 70 |
11 | SURAY Gil | 67 |
12 | WEYLANDT Wouter | 72 |
13 | BOOM Lars | 75 |
16 | VITORIA David | 74 |
19 | LUND Anders | 65 |
22 | VANENDERT Jelle | 62 |
24 | NEIRYNCK Stijn | 78 |
28 | DEROO David | 61 |
29 | ISTA Kevyn | 70 |
30 | SØRENSEN Chris Anker | 64 |
36 | WYSS Danilo | 65 |
39 | NEYENS Maarten | 74 |
42 | KOHLER Martin | 69 |
54 | KONOVALOVAS Ignatas | 74 |
57 | BRESCHEL Matti | 70 |
64 | PARDINI Olivier | 68 |