Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.2 * weight + 43
This means that on average for every extra kilogram weight a rider loses -0.2 positions in the result.
Weylandt
2
72 kgDekker
3
69 kgSuray
4
67 kgIngels
5
70 kgKozontchuk
6
75 kgDe Backer
8
73 kgChristensen
14
69 kgRoelandts
15
78 kgSørensen
18
64 kgLund
19
65 kgVitoria
24
74 kgDeroo
25
61 kgNeirynck
26
78 kgBoom
27
75 kgVanendert
32
62 kgWyss
35
65 kgIsta
37
70 kgNeyens
39
74 kgKohler
43
69 kgKonovalovas
58
74 kgBreschel
61
70 kgPardini
70
68 kg
2
72 kgDekker
3
69 kgSuray
4
67 kgIngels
5
70 kgKozontchuk
6
75 kgDe Backer
8
73 kgChristensen
14
69 kgRoelandts
15
78 kgSørensen
18
64 kgLund
19
65 kgVitoria
24
74 kgDeroo
25
61 kgNeirynck
26
78 kgBoom
27
75 kgVanendert
32
62 kgWyss
35
65 kgIsta
37
70 kgNeyens
39
74 kgKohler
43
69 kgKonovalovas
58
74 kgBreschel
61
70 kgPardini
70
68 kg
Weight (KG) →
Result →
78
61
2
70
# | Rider | Weight (KG) |
---|---|---|
2 | WEYLANDT Wouter | 72 |
3 | DEKKER Thomas | 69 |
4 | SURAY Gil | 67 |
5 | INGELS Nick | 70 |
6 | KOZONTCHUK Dmitry | 75 |
8 | DE BACKER Bert | 73 |
14 | CHRISTENSEN Mads | 69 |
15 | ROELANDTS Jürgen | 78 |
18 | SØRENSEN Chris Anker | 64 |
19 | LUND Anders | 65 |
24 | VITORIA David | 74 |
25 | DEROO David | 61 |
26 | NEIRYNCK Stijn | 78 |
27 | BOOM Lars | 75 |
32 | VANENDERT Jelle | 62 |
35 | WYSS Danilo | 65 |
37 | ISTA Kevyn | 70 |
39 | NEYENS Maarten | 74 |
43 | KOHLER Martin | 69 |
58 | KONOVALOVAS Ignatas | 74 |
61 | BRESCHEL Matti | 70 |
70 | PARDINI Olivier | 68 |