Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -1.5 * weight + 127
This means that on average for every extra kilogram weight a rider loses -1.5 positions in the result.
Bole
1
69 kgRoelandts
2
78 kgLeezer
3
76 kgHermans
5
72 kgCornu
8
78 kgJacobs
10
68 kgVelits
14
63 kgBoom
15
75 kgGesink
16
70 kgDegand
19
63 kgVandewalle
20
74 kgBakelants
24
67 kgVelits
26
70 kgŠpilak
27
68 kgDevillers
28
62 kgSeeldraeyers
29
60 kgMaes
30
78 kgDe Greef
33
77 kgDeroo
36
61 kgPolazzi
47
63 kgSchleck
52
68 kgLund
53
65 kgVanendert
56
62 kgLoubet
64
66 kg
1
69 kgRoelandts
2
78 kgLeezer
3
76 kgHermans
5
72 kgCornu
8
78 kgJacobs
10
68 kgVelits
14
63 kgBoom
15
75 kgGesink
16
70 kgDegand
19
63 kgVandewalle
20
74 kgBakelants
24
67 kgVelits
26
70 kgŠpilak
27
68 kgDevillers
28
62 kgSeeldraeyers
29
60 kgMaes
30
78 kgDe Greef
33
77 kgDeroo
36
61 kgPolazzi
47
63 kgSchleck
52
68 kgLund
53
65 kgVanendert
56
62 kgLoubet
64
66 kg
Weight (KG) →
Result →
78
60
1
64
# | Rider | Weight (KG) |
---|---|---|
1 | BOLE Grega | 69 |
2 | ROELANDTS Jürgen | 78 |
3 | LEEZER Tom | 76 |
5 | HERMANS Ben | 72 |
8 | CORNU Dominique | 78 |
10 | JACOBS Pieter | 68 |
14 | VELITS Peter | 63 |
15 | BOOM Lars | 75 |
16 | GESINK Robert | 70 |
19 | DEGAND Thomas | 63 |
20 | VANDEWALLE Kristof | 74 |
24 | BAKELANTS Jan | 67 |
26 | VELITS Martin | 70 |
27 | ŠPILAK Simon | 68 |
28 | DEVILLERS Gilles | 62 |
29 | SEELDRAEYERS Kevin | 60 |
30 | MAES Nikolas | 78 |
33 | DE GREEF Francis | 77 |
36 | DEROO David | 61 |
47 | POLAZZI Fabio | 63 |
52 | SCHLECK Andy | 68 |
53 | LUND Anders | 65 |
56 | VANENDERT Jelle | 62 |
64 | LOUBET Julien | 66 |