Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1 * weight - 48
This means that on average for every extra kilogram weight a rider loses 1 positions in the result.
Špilak
1
68 kgHermans
3
72 kgMaes
4
78 kgSeeldraeyers
6
60 kgJacobs
7
68 kgCherel
9
65 kgDegand
10
63 kgKreder
12
67 kgPratte
13
67 kgDufrasne
14
70 kgFrank
16
64 kgRuijgh
18
64 kgBakelants
19
67 kgGourgue
20
62 kgSchär
25
78 kgvan Vooren
26
75 kgGastauer
30
73 kgRoux
53
73 kgSmukulis
55
72 kg
1
68 kgHermans
3
72 kgMaes
4
78 kgSeeldraeyers
6
60 kgJacobs
7
68 kgCherel
9
65 kgDegand
10
63 kgKreder
12
67 kgPratte
13
67 kgDufrasne
14
70 kgFrank
16
64 kgRuijgh
18
64 kgBakelants
19
67 kgGourgue
20
62 kgSchär
25
78 kgvan Vooren
26
75 kgGastauer
30
73 kgRoux
53
73 kgSmukulis
55
72 kg
Weight (KG) →
Result →
78
60
1
55
# | Rider | Weight (KG) |
---|---|---|
1 | ŠPILAK Simon | 68 |
3 | HERMANS Ben | 72 |
4 | MAES Nikolas | 78 |
6 | SEELDRAEYERS Kevin | 60 |
7 | JACOBS Pieter | 68 |
9 | CHEREL Mikaël | 65 |
10 | DEGAND Thomas | 63 |
12 | KREDER Michel | 67 |
13 | PRATTE Philippe | 67 |
14 | DUFRASNE Jonathan | 70 |
16 | FRANK Mathias | 64 |
18 | RUIJGH Rob | 64 |
19 | BAKELANTS Jan | 67 |
20 | GOURGUE Benjamin | 62 |
25 | SCHÄR Michael | 78 |
26 | VAN VOOREN Steven | 75 |
30 | GASTAUER Ben | 73 |
53 | ROUX Anthony | 73 |
55 | SMUKULIS Gatis | 72 |