Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.3 * weight + 60
This means that on average for every extra kilogram weight a rider loses -0.3 positions in the result.
Kelderman
3
65 kgJans
9
68 kgVanoverberghe
14
65 kgvan der Haar
15
58 kgAsselman
22
69 kgDernies
25
68 kgWellens
27
71 kgBroeckx
28
73 kgDemoitié
29
69 kgWaeytens
30
67 kgVermote
35
74 kgSprengers
37
60 kgLammertink
49
61 kgvan der Lijke
50
61 kgDe Vos
55
72 kgEvrard
67
65 kgKreder
68
71 kgDe Troyer
79
72 kgHelven
82
74 kgElissonde
86
52 kgDe Bie
100
65 kg
3
65 kgJans
9
68 kgVanoverberghe
14
65 kgvan der Haar
15
58 kgAsselman
22
69 kgDernies
25
68 kgWellens
27
71 kgBroeckx
28
73 kgDemoitié
29
69 kgWaeytens
30
67 kgVermote
35
74 kgSprengers
37
60 kgLammertink
49
61 kgvan der Lijke
50
61 kgDe Vos
55
72 kgEvrard
67
65 kgKreder
68
71 kgDe Troyer
79
72 kgHelven
82
74 kgElissonde
86
52 kgDe Bie
100
65 kg
Weight (KG) →
Result →
74
52
3
100
# | Rider | Weight (KG) |
---|---|---|
3 | KELDERMAN Wilco | 65 |
9 | JANS Roy | 68 |
14 | VANOVERBERGHE Arthur | 65 |
15 | VAN DER HAAR Lars | 58 |
22 | ASSELMAN Jesper | 69 |
25 | DERNIES Tom | 68 |
27 | WELLENS Tim | 71 |
28 | BROECKX Stig | 73 |
29 | DEMOITIÉ Antoine | 69 |
30 | WAEYTENS Zico | 67 |
35 | VERMOTE Alphonse | 74 |
37 | SPRENGERS Thomas | 60 |
49 | LAMMERTINK Maurits | 61 |
50 | VAN DER LIJKE Nick | 61 |
55 | DE VOS Gertjan | 72 |
67 | EVRARD Laurent | 65 |
68 | KREDER Wesley | 71 |
79 | DE TROYER Tim | 72 |
82 | HELVEN Sander | 74 |
86 | ELISSONDE Kenny | 52 |
100 | DE BIE Sean | 65 |