Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.8 * weight - 34
This means that on average for every extra kilogram weight a rider loses 0.8 positions in the result.
Waeytens
1
67 kgBoswell
2
70 kgGuillemois
3
66 kgSchoonbroodt
4
78 kgWellens
5
71 kgHofland
7
71 kgDe Vos
9
72 kgde Greef
10
65 kgMannion
13
58 kgCraddock
14
69 kgPeyskens
15
69 kgTeuns
18
64 kgDruyts
20
69 kgRiesebeek
30
78 kgJaun
34
66 kgAdams
39
66 kgVan Lerberghe
46
83 kgReinders
60
78.1 kgBrown
61
65 kg
1
67 kgBoswell
2
70 kgGuillemois
3
66 kgSchoonbroodt
4
78 kgWellens
5
71 kgHofland
7
71 kgDe Vos
9
72 kgde Greef
10
65 kgMannion
13
58 kgCraddock
14
69 kgPeyskens
15
69 kgTeuns
18
64 kgDruyts
20
69 kgRiesebeek
30
78 kgJaun
34
66 kgAdams
39
66 kgVan Lerberghe
46
83 kgReinders
60
78.1 kgBrown
61
65 kg
Weight (KG) →
Result →
83
58
1
61
# | Rider | Weight (KG) |
---|---|---|
1 | WAEYTENS Zico | 67 |
2 | BOSWELL Ian | 70 |
3 | GUILLEMOIS Romain | 66 |
4 | SCHOONBROODT Bob | 78 |
5 | WELLENS Tim | 71 |
7 | HOFLAND Moreno | 71 |
9 | DE VOS Gertjan | 72 |
10 | DE GREEF Robbert | 65 |
13 | MANNION Gavin | 58 |
14 | CRADDOCK Lawson | 69 |
15 | PEYSKENS Dimitri | 69 |
18 | TEUNS Dylan | 64 |
20 | DRUYTS Gerry | 69 |
30 | RIESEBEEK Oscar | 78 |
34 | JAUN Lukas | 66 |
39 | ADAMS Jens | 66 |
46 | VAN LERBERGHE Bert | 83 |
60 | REINDERS Elmar | 78.1 |
61 | BROWN Nathan | 65 |