Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0 * weight + 19
This means that on average for every extra kilogram weight a rider loses 0 positions in the result.
Wellens
1
71 kgWaeytens
2
67 kgGuillemois
4
66 kgTeuns
5
64 kgHofland
6
71 kgRiesebeek
7
78 kgDruyts
9
69 kgSchoonbroodt
13
78 kgPeyskens
14
69 kgAdams
16
66 kgBoswell
18
70 kgJaun
24
66 kgReinders
25
78.1 kgDe Vos
33
72 kgCraddock
34
69 kgde Greef
35
65 kgMannion
38
58 kgVan Lerberghe
51
83 kgBrown
57
65 kg
1
71 kgWaeytens
2
67 kgGuillemois
4
66 kgTeuns
5
64 kgHofland
6
71 kgRiesebeek
7
78 kgDruyts
9
69 kgSchoonbroodt
13
78 kgPeyskens
14
69 kgAdams
16
66 kgBoswell
18
70 kgJaun
24
66 kgReinders
25
78.1 kgDe Vos
33
72 kgCraddock
34
69 kgde Greef
35
65 kgMannion
38
58 kgVan Lerberghe
51
83 kgBrown
57
65 kg
Weight (KG) →
Result →
83
58
1
57
# | Rider | Weight (KG) |
---|---|---|
1 | WELLENS Tim | 71 |
2 | WAEYTENS Zico | 67 |
4 | GUILLEMOIS Romain | 66 |
5 | TEUNS Dylan | 64 |
6 | HOFLAND Moreno | 71 |
7 | RIESEBEEK Oscar | 78 |
9 | DRUYTS Gerry | 69 |
13 | SCHOONBROODT Bob | 78 |
14 | PEYSKENS Dimitri | 69 |
16 | ADAMS Jens | 66 |
18 | BOSWELL Ian | 70 |
24 | JAUN Lukas | 66 |
25 | REINDERS Elmar | 78.1 |
33 | DE VOS Gertjan | 72 |
34 | CRADDOCK Lawson | 69 |
35 | DE GREEF Robbert | 65 |
38 | MANNION Gavin | 58 |
51 | VAN LERBERGHE Bert | 83 |
57 | BROWN Nathan | 65 |