Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.5 * weight + 67
This means that on average for every extra kilogram weight a rider loses -0.5 positions in the result.
Planckaert
3
69 kgBiermans
4
78 kgVan Hooydonck
5
78 kgWillems
6
67 kgCarbel
7
73 kgJanssen
10
76 kgVan Gompel
11
70 kgKurianov
12
74 kgSchultz
18
60 kgPicoux
21
71 kgCras
22
65 kgLisson
28
73 kgRivière
29
63 kgGregaard
33
66 kgRahbek
34
66 kgPedersen
35
76 kgLowyck
40
55 kgVan Der Beken
42
64 kgHerremans
49
68 kgDe Plus
60
67 kgMaitre
64
71 kgDeruette
68
70 kgGarel
76
77 kg
3
69 kgBiermans
4
78 kgVan Hooydonck
5
78 kgWillems
6
67 kgCarbel
7
73 kgJanssen
10
76 kgVan Gompel
11
70 kgKurianov
12
74 kgSchultz
18
60 kgPicoux
21
71 kgCras
22
65 kgLisson
28
73 kgRivière
29
63 kgGregaard
33
66 kgRahbek
34
66 kgPedersen
35
76 kgLowyck
40
55 kgVan Der Beken
42
64 kgHerremans
49
68 kgDe Plus
60
67 kgMaitre
64
71 kgDeruette
68
70 kgGarel
76
77 kg
Weight (KG) →
Result →
78
55
3
76
# | Rider | Weight (KG) |
---|---|---|
3 | PLANCKAERT Emiel | 69 |
4 | BIERMANS Jenthe | 78 |
5 | VAN HOOYDONCK Nathan | 78 |
6 | WILLEMS Thimo | 67 |
7 | CARBEL Michael | 73 |
10 | JANSSEN Adriaan | 76 |
11 | VAN GOMPEL Mathias | 70 |
12 | KURIANOV Stepan | 74 |
18 | SCHULTZ Jesper | 60 |
21 | PICOUX Maximilien | 71 |
22 | CRAS Steff | 65 |
28 | LISSON Christoffer | 73 |
29 | RIVIÈRE David | 63 |
33 | GREGAARD Jonas | 66 |
34 | RAHBEK Mads | 66 |
35 | PEDERSEN Mads | 76 |
40 | LOWYCK Jesse | 55 |
42 | VAN DER BEKEN Arno | 64 |
49 | HERREMANS Zino | 68 |
60 | DE PLUS Laurens | 67 |
64 | MAITRE Florian | 71 |
68 | DERUETTE Thomas | 70 |
76 | GAREL Adrien | 77 |