Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.4 * weight - 11
This means that on average for every extra kilogram weight a rider loses 0.4 positions in the result.
Evenepoel
1
61 kgDonovan
2
70 kgVervloesem
3
65 kgVan Wilder
5
64 kgColleoni
7
66 kgVermaerke
8
67 kgRetailleau
9
64 kgPidcock
10
58 kgAndersen
11
56 kgPonsaerts
12
61 kgVanhoof
13
75 kgvan den Berg
14
73 kgMainguenaud
15
63 kgVan Tricht
19
64 kgvan der Tuuk
20
64 kgNaberman
21
70 kgBelleri
23
71 kgVan Grieken
24
71 kgPattyn
26
63 kg
1
61 kgDonovan
2
70 kgVervloesem
3
65 kgVan Wilder
5
64 kgColleoni
7
66 kgVermaerke
8
67 kgRetailleau
9
64 kgPidcock
10
58 kgAndersen
11
56 kgPonsaerts
12
61 kgVanhoof
13
75 kgvan den Berg
14
73 kgMainguenaud
15
63 kgVan Tricht
19
64 kgvan der Tuuk
20
64 kgNaberman
21
70 kgBelleri
23
71 kgVan Grieken
24
71 kgPattyn
26
63 kg
Weight (KG) →
Result →
75
56
1
26
# | Rider | Weight (KG) |
---|---|---|
1 | EVENEPOEL Remco | 61 |
2 | DONOVAN Mark | 70 |
3 | VERVLOESEM Xandres | 65 |
5 | VAN WILDER Ilan | 64 |
7 | COLLEONI Kevin | 66 |
8 | VERMAERKE Kevin | 67 |
9 | RETAILLEAU Valentin | 64 |
10 | PIDCOCK Thomas | 58 |
11 | ANDERSEN Sander | 56 |
12 | PONSAERTS Thibaut | 61 |
13 | VANHOOF Ward | 75 |
14 | VAN DEN BERG Marijn | 73 |
15 | MAINGUENAUD Tom | 63 |
19 | VAN TRICHT Stan | 64 |
20 | VAN DER TUUK Danny | 64 |
21 | NABERMAN Tim | 70 |
23 | BELLERI Michael | 71 |
24 | VAN GRIEKEN Jarne | 71 |
26 | PATTYN Steven | 63 |