Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.2 * weight + 32
This means that on average for every extra kilogram weight a rider loses -0.2 positions in the result.
Scott
1
66 kgDebruyne
2
66 kgVan Eetvelt
3
63 kgThomas
4
61 kgTronchon
6
72 kgLaurance
7
66 kgOnley
8
62 kgCoqueret
9
69 kgChromy
11
63 kgGelders
12
66 kgWillems
13
64 kgHuys
14
77 kgDe Pooter
17
66 kgPaulus
19
62 kgTulett
20
56 kgKrijnsen
22
73 kgCortjens
23
76 kgVandenstorme
25
64 kgLecerf
26
54 kgDroogmans
28
60 kgVerstappen
35
64 kgBonnet
39
63 kgClynhens
41
61 kgArtz
43
71 kg
1
66 kgDebruyne
2
66 kgVan Eetvelt
3
63 kgThomas
4
61 kgTronchon
6
72 kgLaurance
7
66 kgOnley
8
62 kgCoqueret
9
69 kgChromy
11
63 kgGelders
12
66 kgWillems
13
64 kgHuys
14
77 kgDe Pooter
17
66 kgPaulus
19
62 kgTulett
20
56 kgKrijnsen
22
73 kgCortjens
23
76 kgVandenstorme
25
64 kgLecerf
26
54 kgDroogmans
28
60 kgVerstappen
35
64 kgBonnet
39
63 kgClynhens
41
61 kgArtz
43
71 kg
Weight (KG) →
Result →
77
54
1
43
# | Rider | Weight (KG) |
---|---|---|
1 | SCOTT Jared | 66 |
2 | DEBRUYNE Ramses | 66 |
3 | VAN EETVELT Lennert | 63 |
4 | THOMAS Théo | 61 |
6 | TRONCHON Bastien | 72 |
7 | LAURANCE Axel | 66 |
8 | ONLEY Oscar | 62 |
9 | COQUERET Louis | 69 |
11 | CHROMY Kyle | 63 |
12 | GELDERS Gil | 66 |
13 | WILLEMS Jago | 64 |
14 | HUYS Branko | 77 |
17 | DE POOTER Dries | 66 |
19 | PAULUS Milan | 62 |
20 | TULETT Ben | 56 |
22 | KRIJNSEN Jelte | 73 |
23 | CORTJENS Ryan | 76 |
25 | VANDENSTORME Dylan | 64 |
26 | LECERF Junior | 54 |
28 | DROOGMANS Lars | 60 |
35 | VERSTAPPEN Tijs | 64 |
39 | BONNET Theo | 63 |
41 | CLYNHENS Toon | 61 |
43 | ARTZ Huub | 71 |