Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.2 * weight + 32
This means that on average for every extra kilogram weight a rider loses -0.2 positions in the result.
Scott
1
66 kgWillems
2
64 kgDebruyne
3
66 kgGelders
4
66 kgVan Eetvelt
5
63 kgThomas
6
61 kgCortjens
7
76 kgTulett
10
56 kgArtz
13
71 kgDe Pooter
17
66 kgLecerf
19
54 kgLaurance
21
63 kgTronchon
24
72 kgHuys
26
77 kgPaulus
28
62 kgKrijnsen
29
73 kgOnley
30
62 kgChromy
31
63 kgVandenstorme
32
64 kgClynhens
36
61 kgCoqueret
37
69 kgDroogmans
39
60 kgVerstappen
40
64 kgBonnet
48
63 kg
1
66 kgWillems
2
64 kgDebruyne
3
66 kgGelders
4
66 kgVan Eetvelt
5
63 kgThomas
6
61 kgCortjens
7
76 kgTulett
10
56 kgArtz
13
71 kgDe Pooter
17
66 kgLecerf
19
54 kgLaurance
21
63 kgTronchon
24
72 kgHuys
26
77 kgPaulus
28
62 kgKrijnsen
29
73 kgOnley
30
62 kgChromy
31
63 kgVandenstorme
32
64 kgClynhens
36
61 kgCoqueret
37
69 kgDroogmans
39
60 kgVerstappen
40
64 kgBonnet
48
63 kg
Weight (KG) →
Result →
77
54
1
48
# | Rider | Weight (KG) |
---|---|---|
1 | SCOTT Jared | 66 |
2 | WILLEMS Jago | 64 |
3 | DEBRUYNE Ramses | 66 |
4 | GELDERS Gil | 66 |
5 | VAN EETVELT Lennert | 63 |
6 | THOMAS Théo | 61 |
7 | CORTJENS Ryan | 76 |
10 | TULETT Ben | 56 |
13 | ARTZ Huub | 71 |
17 | DE POOTER Dries | 66 |
19 | LECERF Junior | 54 |
21 | LAURANCE Axel | 63 |
24 | TRONCHON Bastien | 72 |
26 | HUYS Branko | 77 |
28 | PAULUS Milan | 62 |
29 | KRIJNSEN Jelte | 73 |
30 | ONLEY Oscar | 62 |
31 | CHROMY Kyle | 63 |
32 | VANDENSTORME Dylan | 64 |
36 | CLYNHENS Toon | 61 |
37 | COQUERET Louis | 69 |
39 | DROOGMANS Lars | 60 |
40 | VERSTAPPEN Tijs | 64 |
48 | BONNET Theo | 63 |