Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -1.4 * weight + 124
This means that on average for every extra kilogram weight a rider loses -1.4 positions in the result.
Vergouw
2
73 kgFiorin
7
76 kgCrabbe
9
70 kgVan den Broek
15
69 kgGeerinck
20
67 kgŁątkowski
21
68 kgPera
22
68 kgDe Bock
24
70 kgLightfoot
25
57 kgMachin
30
75 kgHeymans
31
63 kgHawker
32
62 kgGraff
35
68 kgDockx
37
61 kgVanhuffel
49
57 kgZomermaand
50
67 kgNisbet
52
60 kgVerstraete
54
59 kgStoneham
58
67 kgBaert
90
70 kg
2
73 kgFiorin
7
76 kgCrabbe
9
70 kgVan den Broek
15
69 kgGeerinck
20
67 kgŁątkowski
21
68 kgPera
22
68 kgDe Bock
24
70 kgLightfoot
25
57 kgMachin
30
75 kgHeymans
31
63 kgHawker
32
62 kgGraff
35
68 kgDockx
37
61 kgVanhuffel
49
57 kgZomermaand
50
67 kgNisbet
52
60 kgVerstraete
54
59 kgStoneham
58
67 kgBaert
90
70 kg
Weight (KG) →
Result →
76
57
2
90
# | Rider | Weight (KG) |
---|---|---|
2 | VERGOUW Julian | 73 |
7 | FIORIN Matteo | 76 |
9 | CRABBE Tom | 70 |
15 | VAN DEN BROEK Axel | 69 |
20 | GEERINCK Seppe | 67 |
21 | ŁĄTKOWSKI Dawid | 68 |
22 | PERA Marceli | 68 |
24 | DE BOCK Aless | 70 |
25 | LIGHTFOOT Mark | 57 |
30 | MACHIN Zak | 75 |
31 | HEYMANS Yarno | 63 |
32 | HAWKER Finlay | 62 |
35 | GRAFF William | 68 |
37 | DOCKX Gilles | 61 |
49 | VANHUFFEL Matteo | 57 |
50 | ZOMERMAAND Jurgen | 67 |
52 | NISBET Cormac | 60 |
54 | VERSTRAETE Jenthe | 59 |
58 | STONEHAM Angus | 67 |
90 | BAERT Basiel | 70 |