Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1.4 * weight - 75
This means that on average for every extra kilogram weight a rider loses 1.4 positions in the result.
Marchand
2
61 kgEriksson
3
64 kgDinham
8
63 kgLock
9
58 kgGate
10
71 kgHansen
12
60 kgHindsgaul
17
67 kgAaskov Pallesen
18
60 kgSkjelbred
20
69 kgDrege
24
78 kgFouché
26
71 kgGoeman
28
64 kgTeugels
30
64 kgHaugen
32
74 kgLunder
39
78 kgRønning
40
74 kgMuff
42
78 kgSexton
45
71 kg
2
61 kgEriksson
3
64 kgDinham
8
63 kgLock
9
58 kgGate
10
71 kgHansen
12
60 kgHindsgaul
17
67 kgAaskov Pallesen
18
60 kgSkjelbred
20
69 kgDrege
24
78 kgFouché
26
71 kgGoeman
28
64 kgTeugels
30
64 kgHaugen
32
74 kgLunder
39
78 kgRønning
40
74 kgMuff
42
78 kgSexton
45
71 kg
Weight (KG) →
Result →
78
58
2
45
# | Rider | Weight (KG) |
---|---|---|
2 | MARCHAND Gianni | 61 |
3 | ERIKSSON Lucas | 64 |
8 | DINHAM Matthew | 63 |
9 | LOCK Dennis | 58 |
10 | GATE Aaron | 71 |
12 | HANSEN Jesper | 60 |
17 | HINDSGAUL Jacob | 67 |
18 | AASKOV PALLESEN Jeppe | 60 |
20 | SKJELBRED Aleksander | 69 |
24 | DREGE André | 78 |
26 | FOUCHÉ James | 71 |
28 | GOEMAN Andreas | 64 |
30 | TEUGELS Lennert | 64 |
32 | HAUGEN Ole Jakob | 74 |
39 | LUNDER Eirik | 78 |
40 | RØNNING Vebjørn | 74 |
42 | MUFF Frederik | 78 |
45 | SEXTON Tom | 71 |