Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1 * weight - 33
This means that on average for every extra kilogram weight a rider loses 1 positions in the result.
Kulset
2
58 kgBregnhøj
6
63 kgStampe
7
79 kgDahl
8
62 kgRøed
11
74 kgMartinsen
15
62 kgDolven
16
74 kgPedersen
18
61 kgHaugen
23
74 kgVinjebo
29
67 kgBruun
34
69 kgHolther
36
68 kgStokbro
37
70 kgPersmeen
41
69 kgKvam
42
72 kgSkjerping
47
71 kgRavnøy
52
78 kgDahlblom
54
62 kgMård
55
68 kgKnudsen
57
59 kgWallin
58
78 kgStravers
61
73 kgLunder
68
78 kg
2
58 kgBregnhøj
6
63 kgStampe
7
79 kgDahl
8
62 kgRøed
11
74 kgMartinsen
15
62 kgDolven
16
74 kgPedersen
18
61 kgHaugen
23
74 kgVinjebo
29
67 kgBruun
34
69 kgHolther
36
68 kgStokbro
37
70 kgPersmeen
41
69 kgKvam
42
72 kgSkjerping
47
71 kgRavnøy
52
78 kgDahlblom
54
62 kgMård
55
68 kgKnudsen
57
59 kgWallin
58
78 kgStravers
61
73 kgLunder
68
78 kg
Weight (KG) →
Result →
79
58
2
68
# | Rider | Weight (KG) |
---|---|---|
2 | KULSET Johannes | 58 |
6 | BREGNHØJ Mathias | 63 |
7 | STAMPE Daniel | 79 |
8 | DAHL Gustav Frederik | 62 |
11 | RØED Torbjørn Andre | 74 |
15 | MARTINSEN Toralf Rydningen | 62 |
16 | DOLVEN Halvor | 74 |
18 | PEDERSEN Eric | 61 |
23 | HAUGEN Ole Jakob | 74 |
29 | VINJEBO Emil Mielke | 67 |
34 | BRUUN Anders | 69 |
36 | HOLTHER Trym Westgaard | 68 |
37 | STOKBRO Andreas | 70 |
41 | PERSMEEN Axel | 69 |
42 | KVAM Kalle | 72 |
47 | SKJERPING Kristoffer | 71 |
52 | RAVNØY Johan | 78 |
54 | DAHLBLOM Acke | 62 |
55 | MÅRD Filip | 68 |
57 | KNUDSEN Oliver | 59 |
58 | WALLIN Rasmus Bøgh | 78 |
61 | STRAVERS Jarri | 73 |
68 | LUNDER Eirik | 78 |