Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -1 * weight + 100
This means that on average for every extra kilogram weight a rider loses -1 positions in the result.
Pfingsten
2
69 kgMartin
3
75 kgFröhlinger
6
62 kgSchär
7
78 kgFrei
8
71 kgGastauer
16
73 kgPardini
20
68 kgSchets
21
74 kgStauff
22
82 kgKohler
23
69 kgWyss
25
65 kgKluge
28
83 kgDenifl
33
65 kgvan Winden
34
70 kgLang
37
73 kgPöll
41
60 kgMollema
44
64 kgLudescher
53
72 kgKux
60
74 kgDe Ketele
66
66 kgFrank
67
64 kgGretsch
96
69 kg
2
69 kgMartin
3
75 kgFröhlinger
6
62 kgSchär
7
78 kgFrei
8
71 kgGastauer
16
73 kgPardini
20
68 kgSchets
21
74 kgStauff
22
82 kgKohler
23
69 kgWyss
25
65 kgKluge
28
83 kgDenifl
33
65 kgvan Winden
34
70 kgLang
37
73 kgPöll
41
60 kgMollema
44
64 kgLudescher
53
72 kgKux
60
74 kgDe Ketele
66
66 kgFrank
67
64 kgGretsch
96
69 kg
Weight (KG) →
Result →
83
60
2
96
# | Rider | Weight (KG) |
---|---|---|
2 | PFINGSTEN Christoph | 69 |
3 | MARTIN Tony | 75 |
6 | FRÖHLINGER Johannes | 62 |
7 | SCHÄR Michael | 78 |
8 | FREI Thomas | 71 |
16 | GASTAUER Ben | 73 |
20 | PARDINI Olivier | 68 |
21 | SCHETS Steve | 74 |
22 | STAUFF Andreas | 82 |
23 | KOHLER Martin | 69 |
25 | WYSS Danilo | 65 |
28 | KLUGE Roger | 83 |
33 | DENIFL Stefan | 65 |
34 | VAN WINDEN Dennis | 70 |
37 | LANG Pirmin | 73 |
41 | PÖLL Stefan | 60 |
44 | MOLLEMA Bauke | 64 |
53 | LUDESCHER Philipp | 72 |
60 | KUX Christian | 74 |
66 | DE KETELE Kenny | 66 |
67 | FRANK Mathias | 64 |
96 | GRETSCH Patrick | 69 |