Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -1.2 * weight + 127
This means that on average for every extra kilogram weight a rider loses -1.2 positions in the result.
Pfingsten
2
69 kgMartin
3
75 kgFrei
5
71 kgFröhlinger
11
62 kgGastauer
14
73 kgSchär
16
78 kgPardini
18
68 kgWyss
20
65 kgRasmussen
24
88 kgSchets
25
74 kgKluge
26
83 kgStauff
27
82 kgKohler
31
69 kgPöll
49
60 kgLang
55
73 kgDenifl
61
65 kgMollema
67
64 kgvan Winden
71
70 kgLudescher
73
72 kgGretsch
80
69 kgKux
89
74 kgFrank
90
64 kgDe Ketele
94
66 kgMertens
120
73 kg
2
69 kgMartin
3
75 kgFrei
5
71 kgFröhlinger
11
62 kgGastauer
14
73 kgSchär
16
78 kgPardini
18
68 kgWyss
20
65 kgRasmussen
24
88 kgSchets
25
74 kgKluge
26
83 kgStauff
27
82 kgKohler
31
69 kgPöll
49
60 kgLang
55
73 kgDenifl
61
65 kgMollema
67
64 kgvan Winden
71
70 kgLudescher
73
72 kgGretsch
80
69 kgKux
89
74 kgFrank
90
64 kgDe Ketele
94
66 kgMertens
120
73 kg
Weight (KG) →
Result →
88
60
2
120
# | Rider | Weight (KG) |
---|---|---|
2 | PFINGSTEN Christoph | 69 |
3 | MARTIN Tony | 75 |
5 | FREI Thomas | 71 |
11 | FRÖHLINGER Johannes | 62 |
14 | GASTAUER Ben | 73 |
16 | SCHÄR Michael | 78 |
18 | PARDINI Olivier | 68 |
20 | WYSS Danilo | 65 |
24 | RASMUSSEN Alex | 88 |
25 | SCHETS Steve | 74 |
26 | KLUGE Roger | 83 |
27 | STAUFF Andreas | 82 |
31 | KOHLER Martin | 69 |
49 | PÖLL Stefan | 60 |
55 | LANG Pirmin | 73 |
61 | DENIFL Stefan | 65 |
67 | MOLLEMA Bauke | 64 |
71 | VAN WINDEN Dennis | 70 |
73 | LUDESCHER Philipp | 72 |
80 | GRETSCH Patrick | 69 |
89 | KUX Christian | 74 |
90 | FRANK Mathias | 64 |
94 | DE KETELE Kenny | 66 |
120 | MERTENS Tim | 73 |