Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -1.2 * weight + 131
This means that on average for every extra kilogram weight a rider loses -1.2 positions in the result.
Pfingsten
2
69 kgMartin
3
75 kgFröhlinger
10
62 kgFrei
11
71 kgGastauer
14
73 kgSchär
16
78 kgPardini
18
68 kgRasmussen
21
88 kgSchets
22
74 kgWyss
23
65 kgKluge
24
83 kgStauff
25
82 kgKohler
29
69 kgPöll
47
60 kgLang
53
73 kgDenifl
59
65 kgMollema
65
64 kgvan Winden
69
70 kgLudescher
71
72 kgGretsch
80
69 kgKux
89
74 kgFrank
90
64 kgDe Ketele
94
66 kgMertens
120
73 kg
2
69 kgMartin
3
75 kgFröhlinger
10
62 kgFrei
11
71 kgGastauer
14
73 kgSchär
16
78 kgPardini
18
68 kgRasmussen
21
88 kgSchets
22
74 kgWyss
23
65 kgKluge
24
83 kgStauff
25
82 kgKohler
29
69 kgPöll
47
60 kgLang
53
73 kgDenifl
59
65 kgMollema
65
64 kgvan Winden
69
70 kgLudescher
71
72 kgGretsch
80
69 kgKux
89
74 kgFrank
90
64 kgDe Ketele
94
66 kgMertens
120
73 kg
Weight (KG) →
Result →
88
60
2
120
# | Rider | Weight (KG) |
---|---|---|
2 | PFINGSTEN Christoph | 69 |
3 | MARTIN Tony | 75 |
10 | FRÖHLINGER Johannes | 62 |
11 | FREI Thomas | 71 |
14 | GASTAUER Ben | 73 |
16 | SCHÄR Michael | 78 |
18 | PARDINI Olivier | 68 |
21 | RASMUSSEN Alex | 88 |
22 | SCHETS Steve | 74 |
23 | WYSS Danilo | 65 |
24 | KLUGE Roger | 83 |
25 | STAUFF Andreas | 82 |
29 | KOHLER Martin | 69 |
47 | PÖLL Stefan | 60 |
53 | LANG Pirmin | 73 |
59 | DENIFL Stefan | 65 |
65 | MOLLEMA Bauke | 64 |
69 | VAN WINDEN Dennis | 70 |
71 | LUDESCHER Philipp | 72 |
80 | GRETSCH Patrick | 69 |
89 | KUX Christian | 74 |
90 | FRANK Mathias | 64 |
94 | DE KETELE Kenny | 66 |
120 | MERTENS Tim | 73 |