Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.3 * weight + 63
This means that on average for every extra kilogram weight a rider loses -0.3 positions in the result.
Pfingsten
2
69 kgMartin
3
75 kgFröhlinger
5
62 kgFrei
6
71 kgSchär
13
78 kgGastauer
17
73 kgStauff
19
82 kgSchets
20
74 kgPardini
21
68 kgKohler
23
69 kgWyss
24
65 kgKluge
27
83 kgDenifl
33
65 kgLang
42
73 kgPöll
44
60 kgMollema
45
64 kgvan Winden
47
70 kgRasmussen
55
88 kgLudescher
63
72 kgKux
73
74 kgFrank
77
64 kgDe Ketele
79
66 kgGretsch
101
69 kgMertens
111
73 kg
2
69 kgMartin
3
75 kgFröhlinger
5
62 kgFrei
6
71 kgSchär
13
78 kgGastauer
17
73 kgStauff
19
82 kgSchets
20
74 kgPardini
21
68 kgKohler
23
69 kgWyss
24
65 kgKluge
27
83 kgDenifl
33
65 kgLang
42
73 kgPöll
44
60 kgMollema
45
64 kgvan Winden
47
70 kgRasmussen
55
88 kgLudescher
63
72 kgKux
73
74 kgFrank
77
64 kgDe Ketele
79
66 kgGretsch
101
69 kgMertens
111
73 kg
Weight (KG) →
Result →
88
60
2
111
# | Rider | Weight (KG) |
---|---|---|
2 | PFINGSTEN Christoph | 69 |
3 | MARTIN Tony | 75 |
5 | FRÖHLINGER Johannes | 62 |
6 | FREI Thomas | 71 |
13 | SCHÄR Michael | 78 |
17 | GASTAUER Ben | 73 |
19 | STAUFF Andreas | 82 |
20 | SCHETS Steve | 74 |
21 | PARDINI Olivier | 68 |
23 | KOHLER Martin | 69 |
24 | WYSS Danilo | 65 |
27 | KLUGE Roger | 83 |
33 | DENIFL Stefan | 65 |
42 | LANG Pirmin | 73 |
44 | PÖLL Stefan | 60 |
45 | MOLLEMA Bauke | 64 |
47 | VAN WINDEN Dennis | 70 |
55 | RASMUSSEN Alex | 88 |
63 | LUDESCHER Philipp | 72 |
73 | KUX Christian | 74 |
77 | FRANK Mathias | 64 |
79 | DE KETELE Kenny | 66 |
101 | GRETSCH Patrick | 69 |
111 | MERTENS Tim | 73 |