Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1.9 * weight - 92
This means that on average for every extra kilogram weight a rider loses 1.9 positions in the result.
Dekkers
1
72 kgGrosdent
2
74 kgVantomme
3
63 kgNeirynck
8
78 kgDehaes
9
73 kgPardini
13
68 kgVerbist
17
73 kgde Jonge
20
65 kgSuray
28
67 kgMalcourant
38
76 kgNeirynck
40
71 kgSørensen
55
64 kgValentin
62
69 kgVanthourenhout
64
65 kgHeijboer
65
78 kgElijzen
73
80 kgVanmuysen
87
75 kgArmée
93
72 kgBonnet
97
80 kg
1
72 kgGrosdent
2
74 kgVantomme
3
63 kgNeirynck
8
78 kgDehaes
9
73 kgPardini
13
68 kgVerbist
17
73 kgde Jonge
20
65 kgSuray
28
67 kgMalcourant
38
76 kgNeirynck
40
71 kgSørensen
55
64 kgValentin
62
69 kgVanthourenhout
64
65 kgHeijboer
65
78 kgElijzen
73
80 kgVanmuysen
87
75 kgArmée
93
72 kgBonnet
97
80 kg
Weight (KG) →
Result →
80
63
1
97
# | Rider | Weight (KG) |
---|---|---|
1 | DEKKERS Hans | 72 |
2 | GROSDENT William | 74 |
3 | VANTOMME Maxime | 63 |
8 | NEIRYNCK Stijn | 78 |
9 | DEHAES Kenny | 73 |
13 | PARDINI Olivier | 68 |
17 | VERBIST Evert | 73 |
20 | DE JONGE Maarten | 65 |
28 | SURAY Gil | 67 |
38 | MALCOURANT Kevin | 76 |
40 | NEIRYNCK Kevin | 71 |
55 | SØRENSEN Chris Anker | 64 |
62 | VALENTIN Tristan | 69 |
64 | VANTHOURENHOUT Sven | 65 |
65 | HEIJBOER Mathieu | 78 |
73 | ELIJZEN Michiel | 80 |
87 | VANMUYSEN Roel | 75 |
93 | ARMÉE Sander | 72 |
97 | BONNET William | 80 |