Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -1.9 * weight + 179
This means that on average for every extra kilogram weight a rider loses -1.9 positions in the result.
De Ceuster
1
76 kgDe Vos
11
78 kgHarvey
15
75 kgMachin
18
75 kgKool
20
69 kgSetz
25
65 kgVerstraete
34
59 kgQuint
36
75 kgMulder
37
64 kgTregidga
40
84 kgLangbeen
54
68 kgOmloop
57
61 kgHemeryck
68
72 kgJurriaans
78
70 kgvan der Werff
92
60 kgWilliams
94
64 kgPiessens
116
70 kg
1
76 kgDe Vos
11
78 kgHarvey
15
75 kgMachin
18
75 kgKool
20
69 kgSetz
25
65 kgVerstraete
34
59 kgQuint
36
75 kgMulder
37
64 kgTregidga
40
84 kgLangbeen
54
68 kgOmloop
57
61 kgHemeryck
68
72 kgJurriaans
78
70 kgvan der Werff
92
60 kgWilliams
94
64 kgPiessens
116
70 kg
Weight (KG) →
Result →
84
59
1
116
# | Rider | Weight (KG) |
---|---|---|
1 | DE CEUSTER Milan | 76 |
11 | DE VOS Seppe | 78 |
15 | HARVEY Hugh | 75 |
18 | MACHIN Zak | 75 |
20 | KOOL Tobias | 69 |
25 | SETZ Ramon | 65 |
34 | VERSTRAETE Jenthe | 59 |
36 | QUINT Antoine | 75 |
37 | MULDER Martijn | 64 |
40 | TREGIDGA Eli | 84 |
54 | LANGBEEN Ludovic | 68 |
57 | OMLOOP Witse | 61 |
68 | HEMERYCK Wout | 72 |
78 | JURRIAANS Daan | 70 |
92 | VAN DER WERFF Thom | 60 |
94 | WILLIAMS Ryan | 64 |
116 | PIESSENS Arno | 70 |