Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0 * weight + 17
This means that on average for every extra kilogram weight a rider loses 0 positions in the result.
Laborie
2
67 kgCommeyne
4
70 kgKritskiy
5
81 kgBarle
6
72 kgWilmann
7
69 kgDamuseau
8
64 kgMalacarne
10
73 kgOspina
11
62 kgBérard
12
70 kgSoutham
14
69 kgde Jonge
18
65 kgLapthorne
19
70 kgTombak
21
71 kgWallays
23
77 kgOjavee
24
80 kgSolomennikov
26
72 kgHalleguen
31
67 kgPoux
32
70 kgPichon
34
69 kgRichardson
36
75 kgIgnatenko
38
63 kgAernouts
39
63 kgKristoff
42
78 kg
2
67 kgCommeyne
4
70 kgKritskiy
5
81 kgBarle
6
72 kgWilmann
7
69 kgDamuseau
8
64 kgMalacarne
10
73 kgOspina
11
62 kgBérard
12
70 kgSoutham
14
69 kgde Jonge
18
65 kgLapthorne
19
70 kgTombak
21
71 kgWallays
23
77 kgOjavee
24
80 kgSolomennikov
26
72 kgHalleguen
31
67 kgPoux
32
70 kgPichon
34
69 kgRichardson
36
75 kgIgnatenko
38
63 kgAernouts
39
63 kgKristoff
42
78 kg
Weight (KG) →
Result →
81
62
2
42
# | Rider | Weight (KG) |
---|---|---|
2 | LABORIE Christophe | 67 |
4 | COMMEYNE Davy | 70 |
5 | KRITSKIY Timofey | 81 |
6 | BARLE Florent | 72 |
7 | WILMANN Frederik | 69 |
8 | DAMUSEAU Thomas | 64 |
10 | MALACARNE Gael | 73 |
11 | OSPINA Dalivier | 62 |
12 | BÉRARD Julien | 70 |
14 | SOUTHAM Tom | 69 |
18 | DE JONGE Maarten | 65 |
19 | LAPTHORNE Darren | 70 |
21 | TOMBAK Janek | 71 |
23 | WALLAYS Jelle | 77 |
24 | OJAVEE Mart | 80 |
26 | SOLOMENNIKOV Andrei | 72 |
31 | HALLEGUEN Mathieu | 67 |
32 | POUX Paul | 70 |
34 | PICHON Laurent | 69 |
36 | RICHARDSON Simon | 75 |
38 | IGNATENKO Petr | 63 |
39 | AERNOUTS Jim | 63 |
42 | KRISTOFF Alexander | 78 |