Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.8 * weight - 26
This means that on average for every extra kilogram weight a rider loses 0.8 positions in the result.
Antomarchi
1
70 kgHunter
2
72 kgBaliani
3
66 kgMcLeod
4
66 kgUchima
7
63 kgReinhardt
10
72 kgGonçalves
11
70 kgLavieu
13
60 kgNakane
14
55 kgBuchmann
15
59 kgGirdlestone
17
66 kgBommel
18
75 kgCraven
22
75 kgVaubourzeix
25
70 kgDavel Ward
26
72 kgSmit
35
72 kgPorter
43
73 kgFukushima
57
62 kgCarthy
58
69 kgBester
59
67 kgChaabane
62
70 kgDougall
84
72 kg
1
70 kgHunter
2
72 kgBaliani
3
66 kgMcLeod
4
66 kgUchima
7
63 kgReinhardt
10
72 kgGonçalves
11
70 kgLavieu
13
60 kgNakane
14
55 kgBuchmann
15
59 kgGirdlestone
17
66 kgBommel
18
75 kgCraven
22
75 kgVaubourzeix
25
70 kgDavel Ward
26
72 kgSmit
35
72 kgPorter
43
73 kgFukushima
57
62 kgCarthy
58
69 kgBester
59
67 kgChaabane
62
70 kgDougall
84
72 kg
Weight (KG) →
Result →
75
55
1
84
# | Rider | Weight (KG) |
---|---|---|
1 | ANTOMARCHI Julien | 70 |
2 | HUNTER Robert | 72 |
3 | BALIANI Fortunato | 66 |
4 | MCLEOD Ian | 66 |
7 | UCHIMA Kohei | 63 |
10 | REINHARDT Theo | 72 |
11 | GONÇALVES José | 70 |
13 | LAVIEU Antoine | 60 |
14 | NAKANE Hideto | 55 |
15 | BUCHMANN Emanuel | 59 |
17 | GIRDLESTONE Dylan | 66 |
18 | BOMMEL Henning | 75 |
22 | CRAVEN Dan | 75 |
25 | VAUBOURZEIX Thomas | 70 |
26 | DAVEL WARD Shaun | 72 |
35 | SMIT Willie | 72 |
43 | PORTER Elliott | 73 |
57 | FUKUSHIMA Shinichi | 62 |
58 | CARTHY Hugh | 69 |
59 | BESTER Shaun-Nick | 67 |
62 | CHAABANE Hichem | 70 |
84 | DOUGALL Nic | 72 |