Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.7 * weight - 21
This means that on average for every extra kilogram weight a rider loses 0.7 positions in the result.
Hunter
1
72 kgAntomarchi
2
70 kgBaliani
3
66 kgMcLeod
4
66 kgGirdlestone
8
66 kgLavieu
9
60 kgCraven
10
75 kgUchima
13
63 kgGonçalves
14
70 kgNakane
16
55 kgBuchmann
17
59 kgReinhardt
20
72 kgBommel
21
75 kgDavel Ward
22
72 kgVaubourzeix
24
70 kgSmit
26
72 kgCarthy
40
69 kgBester
51
67 kgFukushima
58
62 kgChaabane
59
70 kgPorter
60
73 kgDougall
77
72 kg
1
72 kgAntomarchi
2
70 kgBaliani
3
66 kgMcLeod
4
66 kgGirdlestone
8
66 kgLavieu
9
60 kgCraven
10
75 kgUchima
13
63 kgGonçalves
14
70 kgNakane
16
55 kgBuchmann
17
59 kgReinhardt
20
72 kgBommel
21
75 kgDavel Ward
22
72 kgVaubourzeix
24
70 kgSmit
26
72 kgCarthy
40
69 kgBester
51
67 kgFukushima
58
62 kgChaabane
59
70 kgPorter
60
73 kgDougall
77
72 kg
Weight (KG) →
Result →
75
55
1
77
# | Rider | Weight (KG) |
---|---|---|
1 | HUNTER Robert | 72 |
2 | ANTOMARCHI Julien | 70 |
3 | BALIANI Fortunato | 66 |
4 | MCLEOD Ian | 66 |
8 | GIRDLESTONE Dylan | 66 |
9 | LAVIEU Antoine | 60 |
10 | CRAVEN Dan | 75 |
13 | UCHIMA Kohei | 63 |
14 | GONÇALVES José | 70 |
16 | NAKANE Hideto | 55 |
17 | BUCHMANN Emanuel | 59 |
20 | REINHARDT Theo | 72 |
21 | BOMMEL Henning | 75 |
22 | DAVEL WARD Shaun | 72 |
24 | VAUBOURZEIX Thomas | 70 |
26 | SMIT Willie | 72 |
40 | CARTHY Hugh | 69 |
51 | BESTER Shaun-Nick | 67 |
58 | FUKUSHIMA Shinichi | 62 |
59 | CHAABANE Hichem | 70 |
60 | PORTER Elliott | 73 |
77 | DOUGALL Nic | 72 |