Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.5 * weight - 9
This means that on average for every extra kilogram weight a rider loses 0.5 positions in the result.
Hunter
1
72 kgAntomarchi
2
70 kgBaliani
3
66 kgMcLeod
4
66 kgGirdlestone
8
66 kgLavieu
9
60 kgCraven
10
75 kgUchima
13
63 kgBuchmann
15
59 kgReinhardt
18
72 kgDavel Ward
19
72 kgNakane
20
55 kgBommel
21
75 kgGonçalves
22
70 kgVaubourzeix
24
70 kgSmit
26
72 kgCarthy
37
69 kgBester
53
67 kgPorter
54
73 kgChaabane
57
70 kgFukushima
58
62 kgDougall
68
72 kg
1
72 kgAntomarchi
2
70 kgBaliani
3
66 kgMcLeod
4
66 kgGirdlestone
8
66 kgLavieu
9
60 kgCraven
10
75 kgUchima
13
63 kgBuchmann
15
59 kgReinhardt
18
72 kgDavel Ward
19
72 kgNakane
20
55 kgBommel
21
75 kgGonçalves
22
70 kgVaubourzeix
24
70 kgSmit
26
72 kgCarthy
37
69 kgBester
53
67 kgPorter
54
73 kgChaabane
57
70 kgFukushima
58
62 kgDougall
68
72 kg
Weight (KG) →
Result →
75
55
1
68
# | Rider | Weight (KG) |
---|---|---|
1 | HUNTER Robert | 72 |
2 | ANTOMARCHI Julien | 70 |
3 | BALIANI Fortunato | 66 |
4 | MCLEOD Ian | 66 |
8 | GIRDLESTONE Dylan | 66 |
9 | LAVIEU Antoine | 60 |
10 | CRAVEN Dan | 75 |
13 | UCHIMA Kohei | 63 |
15 | BUCHMANN Emanuel | 59 |
18 | REINHARDT Theo | 72 |
19 | DAVEL WARD Shaun | 72 |
20 | NAKANE Hideto | 55 |
21 | BOMMEL Henning | 75 |
22 | GONÇALVES José | 70 |
24 | VAUBOURZEIX Thomas | 70 |
26 | SMIT Willie | 72 |
37 | CARTHY Hugh | 69 |
53 | BESTER Shaun-Nick | 67 |
54 | PORTER Elliott | 73 |
57 | CHAABANE Hichem | 70 |
58 | FUKUSHIMA Shinichi | 62 |
68 | DOUGALL Nic | 72 |