Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.1 * weight + 45
This means that on average for every extra kilogram weight a rider loses -0.1 positions in the result.
Reinhardt
4
72 kgBaliani
7
66 kgAntomarchi
9
70 kgHunter
11
72 kgMcLeod
12
66 kgLavieu
17
60 kgBuchmann
23
59 kgGirdlestone
24
66 kgPorter
30
73 kgCraven
35
75 kgVaubourzeix
45
70 kgCarthy
48
69 kgDougall
50
72 kgUchima
51
63 kgDavel Ward
52
72 kgBommel
58
75 kgNakane
61
55 kgSmit
66
72 kgBester
68
67 kgChaabane
72
70 kgGonçalves
77
70 kgFukushima
80
62 kg
4
72 kgBaliani
7
66 kgAntomarchi
9
70 kgHunter
11
72 kgMcLeod
12
66 kgLavieu
17
60 kgBuchmann
23
59 kgGirdlestone
24
66 kgPorter
30
73 kgCraven
35
75 kgVaubourzeix
45
70 kgCarthy
48
69 kgDougall
50
72 kgUchima
51
63 kgDavel Ward
52
72 kgBommel
58
75 kgNakane
61
55 kgSmit
66
72 kgBester
68
67 kgChaabane
72
70 kgGonçalves
77
70 kgFukushima
80
62 kg
Weight (KG) →
Result →
75
55
4
80
# | Rider | Weight (KG) |
---|---|---|
4 | REINHARDT Theo | 72 |
7 | BALIANI Fortunato | 66 |
9 | ANTOMARCHI Julien | 70 |
11 | HUNTER Robert | 72 |
12 | MCLEOD Ian | 66 |
17 | LAVIEU Antoine | 60 |
23 | BUCHMANN Emanuel | 59 |
24 | GIRDLESTONE Dylan | 66 |
30 | PORTER Elliott | 73 |
35 | CRAVEN Dan | 75 |
45 | VAUBOURZEIX Thomas | 70 |
48 | CARTHY Hugh | 69 |
50 | DOUGALL Nic | 72 |
51 | UCHIMA Kohei | 63 |
52 | DAVEL WARD Shaun | 72 |
58 | BOMMEL Henning | 75 |
61 | NAKANE Hideto | 55 |
66 | SMIT Willie | 72 |
68 | BESTER Shaun-Nick | 67 |
72 | CHAABANE Hichem | 70 |
77 | GONÇALVES José | 70 |
80 | FUKUSHIMA Shinichi | 62 |