Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.3 * weight + 57
This means that on average for every extra kilogram weight a rider loses -0.3 positions in the result.
Hunter
2
72 kgReinhardt
8
72 kgBester
9
67 kgBaliani
11
66 kgGonçalves
12
70 kgAntomarchi
14
70 kgSmit
15
72 kgLavieu
17
60 kgMcLeod
21
66 kgGirdlestone
23
66 kgCarthy
24
69 kgDavel Ward
36
72 kgBuchmann
42
59 kgPorter
48
73 kgChaabane
52
70 kgBommel
53
75 kgVaubourzeix
55
70 kgDougall
57
72 kgUchima
59
63 kgNakane
61
55 kgFukushima
63
62 kgCraven
75
75 kg
2
72 kgReinhardt
8
72 kgBester
9
67 kgBaliani
11
66 kgGonçalves
12
70 kgAntomarchi
14
70 kgSmit
15
72 kgLavieu
17
60 kgMcLeod
21
66 kgGirdlestone
23
66 kgCarthy
24
69 kgDavel Ward
36
72 kgBuchmann
42
59 kgPorter
48
73 kgChaabane
52
70 kgBommel
53
75 kgVaubourzeix
55
70 kgDougall
57
72 kgUchima
59
63 kgNakane
61
55 kgFukushima
63
62 kgCraven
75
75 kg
Weight (KG) →
Result →
75
55
2
75
# | Rider | Weight (KG) |
---|---|---|
2 | HUNTER Robert | 72 |
8 | REINHARDT Theo | 72 |
9 | BESTER Shaun-Nick | 67 |
11 | BALIANI Fortunato | 66 |
12 | GONÇALVES José | 70 |
14 | ANTOMARCHI Julien | 70 |
15 | SMIT Willie | 72 |
17 | LAVIEU Antoine | 60 |
21 | MCLEOD Ian | 66 |
23 | GIRDLESTONE Dylan | 66 |
24 | CARTHY Hugh | 69 |
36 | DAVEL WARD Shaun | 72 |
42 | BUCHMANN Emanuel | 59 |
48 | PORTER Elliott | 73 |
52 | CHAABANE Hichem | 70 |
53 | BOMMEL Henning | 75 |
55 | VAUBOURZEIX Thomas | 70 |
57 | DOUGALL Nic | 72 |
59 | UCHIMA Kohei | 63 |
61 | NAKANE Hideto | 55 |
63 | FUKUSHIMA Shinichi | 62 |
75 | CRAVEN Dan | 75 |