Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -1.3 * weight + 117
This means that on average for every extra kilogram weight a rider loses -1.3 positions in the result.
Girdlestone
1
66 kgChaabane
2
70 kgHunter
5
72 kgReinhardt
9
72 kgBaliani
10
66 kgAntomarchi
11
70 kgCarthy
13
69 kgBester
15
67 kgMcLeod
16
66 kgPorter
17
73 kgCraven
18
75 kgGonçalves
23
70 kgBuchmann
26
59 kgLavieu
28
60 kgDougall
37
72 kgDavel Ward
39
72 kgVaubourzeix
41
70 kgUchima
49
63 kgBommel
53
75 kgSmit
55
72 kgFukushima
70
62 kgNakane
72
55 kg
1
66 kgChaabane
2
70 kgHunter
5
72 kgReinhardt
9
72 kgBaliani
10
66 kgAntomarchi
11
70 kgCarthy
13
69 kgBester
15
67 kgMcLeod
16
66 kgPorter
17
73 kgCraven
18
75 kgGonçalves
23
70 kgBuchmann
26
59 kgLavieu
28
60 kgDougall
37
72 kgDavel Ward
39
72 kgVaubourzeix
41
70 kgUchima
49
63 kgBommel
53
75 kgSmit
55
72 kgFukushima
70
62 kgNakane
72
55 kg
Weight (KG) →
Result →
75
55
1
72
# | Rider | Weight (KG) |
---|---|---|
1 | GIRDLESTONE Dylan | 66 |
2 | CHAABANE Hichem | 70 |
5 | HUNTER Robert | 72 |
9 | REINHARDT Theo | 72 |
10 | BALIANI Fortunato | 66 |
11 | ANTOMARCHI Julien | 70 |
13 | CARTHY Hugh | 69 |
15 | BESTER Shaun-Nick | 67 |
16 | MCLEOD Ian | 66 |
17 | PORTER Elliott | 73 |
18 | CRAVEN Dan | 75 |
23 | GONÇALVES José | 70 |
26 | BUCHMANN Emanuel | 59 |
28 | LAVIEU Antoine | 60 |
37 | DOUGALL Nic | 72 |
39 | DAVEL WARD Shaun | 72 |
41 | VAUBOURZEIX Thomas | 70 |
49 | UCHIMA Kohei | 63 |
53 | BOMMEL Henning | 75 |
55 | SMIT Willie | 72 |
70 | FUKUSHIMA Shinichi | 62 |
72 | NAKANE Hideto | 55 |