Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -1 * weight + 92
This means that on average for every extra kilogram weight a rider loses -1 positions in the result.
Omloop
1
78 kgSentjens
2
75 kgGardeyn
3
75 kgMifune
4
70 kgJoachim
5
82 kgBoonen
6
82 kgDe Neef
7
75 kgHulsmans
9
75 kgVan Impe
10
75 kgNys
11
73 kgBrandt
12
66 kgVan Lancker
13
67 kgKnaven
14
68 kgVerheyen
16
68 kgWillems
21
67 kgCretskens
22
75 kgCoenen
26
67 kgKuyckx
31
68 kgCappelle
33
71 kgVeneberg
35
75 kgVoskamp
36
75 kgScheirlinckx
39
67 kg
1
78 kgSentjens
2
75 kgGardeyn
3
75 kgMifune
4
70 kgJoachim
5
82 kgBoonen
6
82 kgDe Neef
7
75 kgHulsmans
9
75 kgVan Impe
10
75 kgNys
11
73 kgBrandt
12
66 kgVan Lancker
13
67 kgKnaven
14
68 kgVerheyen
16
68 kgWillems
21
67 kgCretskens
22
75 kgCoenen
26
67 kgKuyckx
31
68 kgCappelle
33
71 kgVeneberg
35
75 kgVoskamp
36
75 kgScheirlinckx
39
67 kg
Weight (KG) →
Result →
82
66
1
39
# | Rider | Weight (KG) |
---|---|---|
1 | OMLOOP Geert | 78 |
2 | SENTJENS Roy | 75 |
3 | GARDEYN Gorik | 75 |
4 | MIFUNE Masahiko | 70 |
5 | JOACHIM Benoît | 82 |
6 | BOONEN Tom | 82 |
7 | DE NEEF Steven | 75 |
9 | HULSMANS Kevin | 75 |
10 | VAN IMPE Kevin | 75 |
11 | NYS Sven | 73 |
12 | BRANDT Christophe | 66 |
13 | VAN LANCKER Kurt | 67 |
14 | KNAVEN Servais | 68 |
16 | VERHEYEN Geert | 68 |
21 | WILLEMS Frederik | 67 |
22 | CRETSKENS Wilfried | 75 |
26 | COENEN Johan | 67 |
31 | KUYCKX Jan | 68 |
33 | CAPPELLE Andy | 71 |
35 | VENEBERG Thorwald | 75 |
36 | VOSKAMP Bart | 75 |
39 | SCHEIRLINCKX Bert | 67 |