Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0 * weight + 27
This means that on average for every extra kilogram weight a rider loses -0 positions in the result.
Nuyens
1
68 kgvan Heeswijk
2
73 kgSentjens
4
75 kgVerheyen
6
68 kgScheirlinckx
7
78 kgOmloop
8
78 kgCretskens
9
75 kgMcGrory
10
73 kgNys
13
73 kgDevolder
16
72 kgScheirlinckx
18
67 kgVierhouten
19
71 kgGilmore
20
67 kgGardeyn
28
75 kgHovelijnck
29
75 kgHoogerland
30
65 kgVan de Wouwer
41
66 kgAmorison
43
70 kgStreel
46
69 kgThijs
48
69 kgDe Neef
49
75 kgEichler
51
78 kgKoerts
52
78 kg
1
68 kgvan Heeswijk
2
73 kgSentjens
4
75 kgVerheyen
6
68 kgScheirlinckx
7
78 kgOmloop
8
78 kgCretskens
9
75 kgMcGrory
10
73 kgNys
13
73 kgDevolder
16
72 kgScheirlinckx
18
67 kgVierhouten
19
71 kgGilmore
20
67 kgGardeyn
28
75 kgHovelijnck
29
75 kgHoogerland
30
65 kgVan de Wouwer
41
66 kgAmorison
43
70 kgStreel
46
69 kgThijs
48
69 kgDe Neef
49
75 kgEichler
51
78 kgKoerts
52
78 kg
Weight (KG) →
Result →
78
65
1
52
# | Rider | Weight (KG) |
---|---|---|
1 | NUYENS Nick | 68 |
2 | VAN HEESWIJK Max | 73 |
4 | SENTJENS Roy | 75 |
6 | VERHEYEN Geert | 68 |
7 | SCHEIRLINCKX Staf | 78 |
8 | OMLOOP Geert | 78 |
9 | CRETSKENS Wilfried | 75 |
10 | MCGRORY Scott | 73 |
13 | NYS Sven | 73 |
16 | DEVOLDER Stijn | 72 |
18 | SCHEIRLINCKX Bert | 67 |
19 | VIERHOUTEN Aart | 71 |
20 | GILMORE Matthew | 67 |
28 | GARDEYN Gorik | 75 |
29 | HOVELIJNCK Kurt | 75 |
30 | HOOGERLAND Johnny | 65 |
41 | VAN DE WOUWER Kurt | 66 |
43 | AMORISON Frédéric | 70 |
46 | STREEL Marc | 69 |
48 | THIJS Erwin | 69 |
49 | DE NEEF Steven | 75 |
51 | EICHLER Markus | 78 |
52 | KOERTS Jans | 78 |