Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.5 * weight - 15
This means that on average for every extra kilogram weight a rider loses 0.5 positions in the result.
van Heeswijk
1
73 kgde Jongh
2
76 kgDekkers
3
72 kgDe Schrooder
4
61 kgPronk
6
73 kgSentjens
7
75 kgVierhouten
8
71 kgCretskens
11
75 kgVan Goolen
14
70 kgThijs
15
69 kgRoesems
16
81 kgSteurs
19
77 kgGilmore
20
67 kgScheirlinckx
22
67 kgDevolder
25
72 kgHulsmans
26
75 kgDe Waele
27
71 kgHonig
31
61 kgRoelandts
32
78 kgFarrar
33
73 kgvan Dijk
43
74 kgSteegmans
45
82 kg
1
73 kgde Jongh
2
76 kgDekkers
3
72 kgDe Schrooder
4
61 kgPronk
6
73 kgSentjens
7
75 kgVierhouten
8
71 kgCretskens
11
75 kgVan Goolen
14
70 kgThijs
15
69 kgRoesems
16
81 kgSteurs
19
77 kgGilmore
20
67 kgScheirlinckx
22
67 kgDevolder
25
72 kgHulsmans
26
75 kgDe Waele
27
71 kgHonig
31
61 kgRoelandts
32
78 kgFarrar
33
73 kgvan Dijk
43
74 kgSteegmans
45
82 kg
Weight (KG) →
Result →
82
61
1
45
# | Rider | Weight (KG) |
---|---|---|
1 | VAN HEESWIJK Max | 73 |
2 | DE JONGH Steven | 76 |
3 | DEKKERS Hans | 72 |
4 | DE SCHROODER Benny | 61 |
6 | PRONK Matthé | 73 |
7 | SENTJENS Roy | 75 |
8 | VIERHOUTEN Aart | 71 |
11 | CRETSKENS Wilfried | 75 |
14 | VAN GOOLEN Jurgen | 70 |
15 | THIJS Erwin | 69 |
16 | ROESEMS Bert | 81 |
19 | STEURS Geert | 77 |
20 | GILMORE Matthew | 67 |
22 | SCHEIRLINCKX Bert | 67 |
25 | DEVOLDER Stijn | 72 |
26 | HULSMANS Kevin | 75 |
27 | DE WAELE Bert | 71 |
31 | HONIG Reinier | 61 |
32 | ROELANDTS Jürgen | 78 |
33 | FARRAR Tyler | 73 |
43 | VAN DIJK Stefan | 74 |
45 | STEEGMANS Gert | 82 |