Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.9 * weight - 34
This means that on average for every extra kilogram weight a rider loses 0.9 positions in the result.
Drizners
1
70 kgBerwick
2
59 kgLindorff
4
60 kgPlapp
5
72 kgPorter
6
66 kgSchultz
8
62 kgSayers
18
65 kgSens
19
71 kgHopkins
20
74 kgAlbrecht
31
62 kgBarrett
35
65 kgScott
36
80 kgO'Brien
38
79 kgDinham
43
63 kgNiquet-Olden
45
75 kgMarshall
51
65 kgEvans
55
61 kgJones
59
82 kg
1
70 kgBerwick
2
59 kgLindorff
4
60 kgPlapp
5
72 kgPorter
6
66 kgSchultz
8
62 kgSayers
18
65 kgSens
19
71 kgHopkins
20
74 kgAlbrecht
31
62 kgBarrett
35
65 kgScott
36
80 kgO'Brien
38
79 kgDinham
43
63 kgNiquet-Olden
45
75 kgMarshall
51
65 kgEvans
55
61 kgJones
59
82 kg
Weight (KG) →
Result →
82
59
1
59
# | Rider | Weight (KG) |
---|---|---|
1 | DRIZNERS Jarrad | 70 |
2 | BERWICK Sebastian | 59 |
4 | LINDORFF Tyler | 60 |
5 | PLAPP Luke | 72 |
6 | PORTER Rudy | 66 |
8 | SCHULTZ Elliot | 62 |
18 | SAYERS Cooper | 65 |
19 | SENS Connor | 71 |
20 | HOPKINS Dylan | 74 |
31 | ALBRECHT Jasper | 62 |
35 | BARRETT Sebastian | 65 |
36 | SCOTT Cameron | 80 |
38 | O'BRIEN Kelland | 79 |
43 | DINHAM Matthew | 63 |
45 | NIQUET-OLDEN Bentley | 75 |
51 | MARSHALL Jack | 65 |
55 | EVANS Spencer | 61 |
59 | JONES Taj | 82 |