Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -1.2 * weight + 100
This means that on average for every extra kilogram weight a rider loses -1.2 positions in the result.
Quick
1
77 kgDinham
2
63 kgWalsh
5
80 kgPorter
6
66 kgMacKellar
7
69 kgGeorge
8
68 kgHopkins
9
74 kgPlowright
11
80 kgGilmore
12
70 kgJohnston
13
75 kgFox
18
71 kgForbes
23
58 kgMarshall
28
65 kgInglis
30
68 kgGreenwood
33
63 kgKæmpe
37
59 kgPanizza
38
63 kgSampson
39
65 kgHenderson
42
69 kg
1
77 kgDinham
2
63 kgWalsh
5
80 kgPorter
6
66 kgMacKellar
7
69 kgGeorge
8
68 kgHopkins
9
74 kgPlowright
11
80 kgGilmore
12
70 kgJohnston
13
75 kgFox
18
71 kgForbes
23
58 kgMarshall
28
65 kgInglis
30
68 kgGreenwood
33
63 kgKæmpe
37
59 kgPanizza
38
63 kgSampson
39
65 kgHenderson
42
69 kg
Weight (KG) →
Result →
80
58
1
42
# | Rider | Weight (KG) |
---|---|---|
1 | QUICK Blake | 77 |
2 | DINHAM Matthew | 63 |
5 | WALSH Liam | 80 |
6 | PORTER Rudy | 66 |
7 | MACKELLAR Alastair | 69 |
8 | GEORGE Dylan | 68 |
9 | HOPKINS Dylan | 74 |
11 | PLOWRIGHT Jensen | 80 |
12 | GILMORE Brady | 70 |
13 | JOHNSTON Liam | 75 |
18 | FOX Matthew | 71 |
23 | FORBES James | 58 |
28 | MARSHALL Jack | 65 |
30 | INGLIS Joseph | 68 |
33 | GREENWOOD Matthew | 63 |
37 | KÆMPE Stinus Bjerring | 59 |
38 | PANIZZA James | 63 |
39 | SAMPSON Andy | 65 |
42 | HENDERSON Kobe | 69 |