Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0 * weight + 20
This means that on average for every extra kilogram weight a rider loses -0 positions in the result.
Greenwood
2
63 kgFox
3
71 kgChamberlain
4
74 kgLudman
6
66 kgTomkinson
8
61 kgDerrick
10
54 kgHarrison
11
65 kgAgnoletto
12
69 kgPanizza
16
63 kgBleddyn
17
67 kgTeese
19
59 kgSampson
20
65 kgGalea
21
62 kgTeese
24
58 kgJessen
25
58 kgHeffernan
28
60 kgCranage
31
63 kgMcgovern
32
70 kgHadden
33
68 kgHamer
35
72 kgBogna
36
66 kg
2
63 kgFox
3
71 kgChamberlain
4
74 kgLudman
6
66 kgTomkinson
8
61 kgDerrick
10
54 kgHarrison
11
65 kgAgnoletto
12
69 kgPanizza
16
63 kgBleddyn
17
67 kgTeese
19
59 kgSampson
20
65 kgGalea
21
62 kgTeese
24
58 kgJessen
25
58 kgHeffernan
28
60 kgCranage
31
63 kgMcgovern
32
70 kgHadden
33
68 kgHamer
35
72 kgBogna
36
66 kg
Weight (KG) →
Result →
74
54
2
36
# | Rider | Weight (KG) |
---|---|---|
2 | GREENWOOD Matthew | 63 |
3 | FOX Matthew | 71 |
4 | CHAMBERLAIN Oscar | 74 |
6 | LUDMAN Joshua | 66 |
8 | TOMKINSON Tyler | 61 |
10 | DERRICK James | 54 |
11 | HARRISON Curtis | 65 |
12 | AGNOLETTO Blake | 69 |
16 | PANIZZA James | 63 |
17 | BLEDDYN Oliver | 67 |
19 | TEESE Aidan | 59 |
20 | SAMPSON Andy | 65 |
21 | GALEA Alexander | 62 |
24 | TEESE Ronan | 58 |
25 | JESSEN Cohen | 58 |
28 | HEFFERNAN William | 60 |
31 | CRANAGE Joshua | 63 |
32 | MCGOVERN Mitchell | 70 |
33 | HADDEN Nate | 68 |
35 | HAMER Jonah | 72 |
36 | BOGNA Alex | 66 |