Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.1 * weight + 20
This means that on average for every extra kilogram weight a rider loses -0.1 positions in the result.
Gerrans
1
62 kgEvans
2
64 kgPorte
3
62 kgMeyer
4
70 kgBobridge
5
65 kgLapthorne
6
70 kgVon Hoff
8
70 kgDempster
9
77 kgTanner
10
70 kgMeyer
11
68 kgEarle
12
70 kgHansen
13
72 kgClarke
14
81 kgSulzberger
15
65 kgSulzberger
16
67 kgRoe
17
66 kgNorris
18
67 kgClarke
19
63 kgHucker
26
68 kgHayman
27
78 kgDyball
28
63 kgRudolph
31
69 kgAnderson
33
68 kgCrawford
35
59 kg
1
62 kgEvans
2
64 kgPorte
3
62 kgMeyer
4
70 kgBobridge
5
65 kgLapthorne
6
70 kgVon Hoff
8
70 kgDempster
9
77 kgTanner
10
70 kgMeyer
11
68 kgEarle
12
70 kgHansen
13
72 kgClarke
14
81 kgSulzberger
15
65 kgSulzberger
16
67 kgRoe
17
66 kgNorris
18
67 kgClarke
19
63 kgHucker
26
68 kgHayman
27
78 kgDyball
28
63 kgRudolph
31
69 kgAnderson
33
68 kgCrawford
35
59 kg
Weight (KG) →
Result →
81
59
1
35
# | Rider | Weight (KG) |
---|---|---|
1 | GERRANS Simon | 62 |
2 | EVANS Cadel | 64 |
3 | PORTE Richie | 62 |
4 | MEYER Cameron | 70 |
5 | BOBRIDGE Jack | 65 |
6 | LAPTHORNE Darren | 70 |
8 | VON HOFF Steele | 70 |
9 | DEMPSTER Zak | 77 |
10 | TANNER David | 70 |
11 | MEYER Travis | 68 |
12 | EARLE Nathan | 70 |
13 | HANSEN Adam | 72 |
14 | CLARKE Will | 81 |
15 | SULZBERGER Wesley | 65 |
16 | SULZBERGER Bernard | 67 |
17 | ROE Timothy | 66 |
18 | NORRIS Lachlan | 67 |
19 | CLARKE Simon | 63 |
26 | HUCKER Robbie | 68 |
27 | HAYMAN Mathew | 78 |
28 | DYBALL Benjamin | 63 |
31 | RUDOLPH Malcolm | 69 |
33 | ANDERSON Jack | 68 |
35 | CRAWFORD Jai | 59 |